Products Bio-Chem Equipment Glass Reactor

Glass Reactor

A glass reactor is a vessel that comes with an agitator and integral heating/cooling system, commonly made of borosilicate glass in sizes ranging from 50ml to 200L. 

1-5L Jacket Glass Reactor

1-5L Jacket Glass Reactor

Item Number : KR-1

1-5L Single Glass Reactor

1-5L Single Glass Reactor

Item Number : KR-1S

10-50L Jacket Glass Reactor

10-50L Jacket Glass Reactor

Item Number : KR-10

10-50L Single Glass Reactor

10-50L Single Glass Reactor

Item Number : KR-10S

80-150L Jacket Glass Reactor

80-150L Jacket Glass Reactor

Item Number : KR-80

80-150L Single Glass Reactor

80-150L Single Glass Reactor

Item Number : KR-80S

Lifting/tilting Glass Reactor

Lifting/tilting Glass Reactor

Item Number : KR-80L


Liquids or solids are introduced into the reactor via connections at the top cover, while vapors are discharged through the top and wastes from the bottom. Its main advantages are versatility and visibility, as a single vessel system can carry out a sequence of different operations without breaking containment, which is particularly useful for processing toxic or highly potent compounds.

Types of glass reactors

There are different types of glass reactors available, including glass-lined, hydrothermal synthesis, magnetic stirring, electric heating, and steam reactors. However, the most commonly used is the glass reactor due to its advantages, such as no pollution, high temperature and corrosion resistance, hygiene, and fast heating. The basic principle of a glass reactor is to stir the reaction and control the reflux and evaporation of the solution in a sealed container under a set constant temperature and normal or negative pressure.

Applications

The glass reactor finds application in various scenarios, including high temperature reactions (up to 300℃), low temperature reactions (down to -80℃), negative pressure reactions under vacuum, solvent synthesis at a constant temperature, distillation and reflux reactions, vacuum distillation reactions, extraction separation reactions, purified reactions, concentration reactions, and stirring reactions.

Users can adjust the temperature and pressure to suit different experimental environments and requirements. Its versatility makes it useful in various industries, including chemical engineering, pharmaceuticals, and biotechnology. The glass reactor's ability to handle a wide range of chemical reactions and maintain visibility throughout the process makes it a popular choice for research and development.

KinTek glass reactor

We highly recommend our KinTek glass reactor equipment, which boasts a long production history and a complete range of products. Our reactors can be customized to meet the unique needs of each customer, making them suitable for a wide range of applications in industries such as chemical engineering, pharmaceuticals, and biotechnology. Choose KinTek for reliable and customizable glass reactors that meet your specific needs.

FAQ

What are the main types of laboratory glassware?

The main types of laboratory glassware include stirring rods, oscillating beads, optical glass sheets, single and jacket glass reactors, specimen jars, PTFE flasks, glass tissue grinders, PTFE volumetric flasks, PTFE measuring cylinders, PTFE triangular bottles, PTFE reagent bottles, PTFE sampling spoons, and constant temperature heating magnetic stirrers.

What is a glass reactor?

A glass reactor is a laboratory instrument used to facilitate chemical reactions. It provides an environment conducive for reactions and holds the reactants in place, while also allowing for easy monitoring of the progress of the reaction. There are two main types of glass reactors: batch reactors and continuous reactors. Batch reactors are smaller in size and can only handle small quantities of reactants, while continuous reactors allow for the pouring of reactants into the reaction chamber continuously and can handle larger volumes of reactants. Glass reactors are used in a variety of applications, from chemical synthesis to environmental and life science research.

What is a high pressure reactor?

A high-pressure reactor is an equipment designed to perform chemical reactions or other processes under elevated pressure and temperature conditions. It is used in various industries, such as chemical, petrochemical, pharmaceutical, and materials science, to carry out processes requiring high pressure or temperatures. It includes a pressure vessel, closure, temperature, and pressure control, stirring or mixing mechanism, and ports or connections. High-pressure reactors are useful in studying reaction kinetics, performing catalytic reactions, synthesizing new materials, and developing novel chemical processes. They come in various sizes and designs, with temperature control and agitation options, making them suitable for a wide range of reactions.

What are the applications of laboratory glassware?

Laboratory glassware is used in various applications such as chemical experiments, preventing zeolite formation, optical applications, synthetic reactions, distillation, filtration, specimen preservation, handling corrosive substances, high-temperature applications, and precise temperature control and mixing in laboratory settings.

What is Isostatic Pressing?

Isostatic pressing is a powder metallurgy process that uses equal pressure in all directions to produce uniform density and microstructure in a powder compact.

What are the benefits of isostatic pressing?

Isostatic pressing provides uniform strength and density, shape flexibility, a wide range of component sizes, and low tooling cost. It also allows for larger parts, enhances alloying possibilities, reduces lead times, and minimizes material and machining costs.

What are the advantages of glass reactor?

The advantages of glass reactors are their ability to optimize and replicate chemical reactions, and provide a clear view of the reaction process. They are corrosion-resistant, work with different atmospheric pressures and vacuum, and can be used for a variety of applications such as catalytic research, process engineering, and biomass research. Glass reactors are also designed with safety in mind, allowing for safe processing of solvents and acids. Other benefits include the availability of various options such as heating/cooling systems, vacuum pumps, PH probes, and pressure gauges.

What causes an increase in pressure within a high-pressure reactor?

Increasing pressure inside a pressure reactor can be achieved through various means. One common method is by heating a sealed pressure vessel, where temperature and pressure increase proportionately, impacting reaction kinetics. Alternatively, the reaction occurring inside the vessel can induce pressure, and agitation can accelerate this process.

In situations where heating is unsuitable or insufficient pressure is generated, manual pressurization is possible with a compressed gas source, such as a compressor or a pre-compressed canister of inert gas.

Pressure reactors utilize pressure relief valves to safely regulate and maintain pressure, emphasizing their reliable and safe operation.

What are the advantages of using borosilicate glass in laboratory glassware?

The advantages of using borosilicate glass in laboratory glassware include excellent optical properties, a smooth surface for clear visibility, and the option for added protection through transect coatings, which enhance the efficiency of inspection processes.

What are the types of isostatic pressing?

There are two main types of isostatic pressing:

  • Hot Isostatic Pressing (HIP): This type of isostatic pressing uses high temperature and high pressure to consolidate and strengthen the material. The material is heated in a sealed container and then subjected to equal pressure from all directions.
  • Cold Isostatic Pressing (CIP): In this type of isostatic pressing, the material is compacted at room temperature using hydraulic pressure. This method is commonly used to form ceramic and metal powders into complex shapes and structures.

What material is glass reactor?

The glass reactor is made of borosilicate glass and has excellent physical and chemical properties. The borosilicate glass is highly resistant to thermal shock, chemical corrosion, and mechanical impacts, making it ideal for use in laboratory equipment. The glass is also transparent, allowing for easy observation of the reaction inside the vessel. The glass reactor is designed to withstand high temperatures and pressure, and it is used in various industries such as petrochemical, pharmaceutical, and dye, among others.

How does a pressure reactor work?

A pressure reactor is a laboratory device used to conduct chemical reactions at high pressure. It works by controlling the pressure within the reactor vessel, allowing researchers to increase the pressure to desired levels and monitor the reaction as it occurs. The high-pressure environment can alter the reaction rate and outcome, making pressure reactors an essential tool for understanding the underlying mechanisms of chemical reactions. Pressure reactors are designed with safety in mind, featuring high-quality pressure-resistant materials, automatic pressure control systems, and leak-detection systems. They come in various sizes and designs, making them suitable for a wide range of reactions.

How does borosilicate glass enhance the efficiency of laboratory processes?

Borosilicate glass enhances the efficiency of laboratory processes by providing a smooth surface that offers excellent visibility, allowing for better inspection and monitoring of reactions and experiments. Its optical properties make it a preferred material over plastics, metals, and other building materials.

What type of isostatic pressing equipment do you have?

Our primary focus is the production of cold isostatic pressing equipment for both laboratory and industrial use.

What are the different types of glass reactors?

Different types of glass reactors include single-layer, double-layer, and three-layer glass reactors. Other types of reactors include glass-lined reactors, hydrothermal synthesis reactors, magnetic stirring reactors, electric heating reactors, and steam reactors. Glass reactors are commonly used in high and low-temperature reactions, vacuum reactions, solvent synthesis at a constant temperature, distillation and reflux reactions, vacuum distillation reactions, extraction separation reactions, purified reactions, and concentration reactions.

What makes PTFE glassware suitable for handling corrosive substances?

PTFE glassware is suitable for handling corrosive substances due to its exceptional chemical resistance, temperature stability, and non-stick properties. These features make PTFE flasks, cylinders, and bottles ideal for use in laboratories where corrosive chemicals are involved.

What are the wet bag process and the dry bag process?

The CIP molding process is divided into two methods: the wet bag process and the dry bag process.

Wet bag process:

In this method, the powder material is placed in a flexible mold bag and placed in a pressure vessel filled with high-pressure liquid. This process is ideal for producing multi-shaped products and is suitable for small to large quantities, including large-sized parts.

Dry bag process:

In the dry bag process, a flexible membrane is integrated into the pressure vessel and is used throughout the pressing process. This membrane separates the pressure fluid from the mold, creating a "dry bag." This method is more hygienic as the flexible mold does not get contaminated with wet powder and requires less cleaning of the vessel. It also features fast cycles, making it ideal for mass producing powder products in an automated process.

What temperature should a glass reactor be?

The temperature range of a glass reactor may vary depending on the model and its intended use. In general, glass reactors can operate at temperatures as low as -80°C and as high as 300°C. However, the optimal working temperature will depend on the specific reaction being conducted and the chemicals being used. It is important to carefully monitor and control the temperature of the glass reactor to ensure the safety and effectiveness of the reaction.

How long is your delivery time? If I want to customize the instrument, how long does it take?

If the items are available in stock, the delivery time is 6-12 days. We also offer customization services for our customers. The lead time for customized products varies depending on the specifications and can take between 25-55 days.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Basic Mixing Equipment in the Laboratory

Basic Mixing Equipment in the Laboratory

Overview of essential laboratory mixing devices and their functionalities.

Read more
Electric Lab Cold Isostatic Press (CIP): Applications, Benefits, and Customization

Electric Lab Cold Isostatic Press (CIP): Applications, Benefits, and Customization

Explore the versatile world of Electric Lab Cold Isostatic Press (CIP) technology. Learn about its applications in various industries, benefits, and customization options for tailored solutions.

Read more
Comprehensive Guide to Tube Furnaces: Types, Applications, and Considerations

Comprehensive Guide to Tube Furnaces: Types, Applications, and Considerations

Delve into the realm of tube furnaces, exploring their types, diverse applications in industries and laboratories, and crucial factors to consider for optimal usage.

Read more
PTFE Cleaning Racks: The Ultimate Guide to Cleaning and Drying Labware

PTFE Cleaning Racks: The Ultimate Guide to Cleaning and Drying Labware

In this comprehensive guide, we'll delve into the world of PTFE cleaning racks, exploring their benefits, applications, and the best practices for cleaning and drying labware to ensure optimal performance and longevity.

Read more
Disc / Cup Vibratory Mill: A Comprehensive Guide to Grinding Equipment

Disc / Cup Vibratory Mill: A Comprehensive Guide to Grinding Equipment

Discover the world of Disc / Cup Vibratory Mills! This guide covers everything from types and features to applications and benefits. Explore the versatility of these mills for grinding various materials in industries like pharmaceuticals, food, and chemicals.

Read more
PTFE Shovel: A Comprehensive Guide to Its Uses, Advantages, and Applications

PTFE Shovel: A Comprehensive Guide to Its Uses, Advantages, and Applications

Discover the versatile applications of PTFE shovels in various industries, including their unique properties, benefits, and real-world examples. Explore the advantages of PTFE shovels over traditional materials and delve into the specific uses in laboratory settings.

Read more
Maximize Rotary Furnace Performance: Design Advancements for Efficient Material Processing

Maximize Rotary Furnace Performance: Design Advancements for Efficient Material Processing

Discover the intricacies of rotary furnaces, exploring their design improvements and applications in advanced materials processing. Learn how these furnaces optimize throughput, energy efficiency, and product quality.

Read more
Rotary Furnaces: A Comprehensive Guide to Advanced Materials Processing

Rotary Furnaces: A Comprehensive Guide to Advanced Materials Processing

Rotary furnaces are widely used for advanced materials processing due to their versatility, temperature uniformity, and energy efficiency. This guide provides an overview of rotary furnace technology, including its working principle, applications, design improvements, and control systems.

Read more
Unveiling the Versatility of Heated Lab Presses: A Comprehensive Guide

Unveiling the Versatility of Heated Lab Presses: A Comprehensive Guide

Explore the world of Heated Lab Presses, delving into their types, applications, key features, safety measures, and maintenance tips. Discover how these versatile tools empower laboratories across diverse industries.

Read more
Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Cold Isostatic Pressing (CIP) is a widely used manufacturing process in various industries, including ceramics, metalworking, and pharmaceuticals. It involves applying equal pressure from all directions to a material placed inside a flexible mold or bag. This process helps in achieving uniform density and shaping complex components with intricate geometries.

Read more
Comprehensive Overview of Warm Isostatic Press and Its Applications

Comprehensive Overview of Warm Isostatic Press and Its Applications

Warm isostatic pressing (WIP) is a variant of cold isostatic pressing (CIP) that includes a heating element. It employs warm water or a similar medium to apply uniform pressure to powdered products from all directions. WIP is a cutting-edge technology that enables isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium.

Read more
Dilution Ratios for XRF Pelletising Finding the Optimal Balance

Dilution Ratios for XRF Pelletising Finding the Optimal Balance

XRF analysis is a powerful technique used by researchers and scientists to determine the elemental composition of various materials. One of the most crucial steps in XRF analysis is the preparation of samples for analysis, which often involves creating pellets from powdered samples.

Read more
WIP – Warm Isostatic Press Equipment: Design, Features, and Benefits

WIP – Warm Isostatic Press Equipment: Design, Features, and Benefits

KinTek specializes in designing and building Warm Isostatic Presses (WIP) for various applications. These systems can be either gas or liquid pressurized and are commonly used for plastics and laminated products. WIPs are custom-built to accommodate different pressure levels, ranging from low pressure to extreme pressures.

Read more
Mastering the Art of Rotary Evaporation

Mastering the Art of Rotary Evaporation

Rotary evaporation is a technique used in laboratories to remove solvents from samples through the process of evaporation.

Read more
Is a High-Priced Rotavapor Worth the Investment

Is a High-Priced Rotavapor Worth the Investment

Rotary evaporators, also known as rotavaps, are essential laboratory equipment used in the chemical, pharmaceutical, and biotech industries for the separation of solvents from a solution.

Read more
Unraveling The Mysteries of Rotary Evaporators Why They're Better

Unraveling The Mysteries of Rotary Evaporators Why They're Better

A rotary evaporator, or rotovap, is a laboratory equipment used for distillation of solvents and other compounds. It works by rotating the sample flask, while simultaneously heating it, to evaporate the solvent and separate it from the sample.

Read more
Comprehensive Analysis of the Laboratory Press and Its Key Features

Comprehensive Analysis of the Laboratory Press and Its Key Features

In the world of laboratory research and testing, having a reliable and efficient laboratory press is crucial. Whether you're working with materials testing, sample preparation, or quality control, a laboratory press can greatly enhance your workflow.

Read more
Enhancing Safety in Your Laboratory: A Comprehensive Guide to Pressure Reactor Safety

Enhancing Safety in Your Laboratory: A Comprehensive Guide to Pressure Reactor Safety

Laboratory safety isn't just about you. Improper preparation and mishandling can cause potential hazards that could be disastrous if left unchecked. It is crucial to take the time to carefully prepare your pressure reactor and lab safety equipment, as even minor problems can escalate quickly when working under pressure.

Read more
How to Save Money When Buying a Rotary Evaporator (Rotavapor)

How to Save Money When Buying a Rotary Evaporator (Rotavapor)

A rotary evaporator, also known as a rotavapor, is a laboratory equipment commonly used to remove solvents from a sample. It works by rotating the sample flask to create a thin film of the solvent, which is then evaporated.

Read more
How to Maximize Extraction Efficiency with a Rotary Evaporator

How to Maximize Extraction Efficiency with a Rotary Evaporator

Rotary evaporation is a technique used to separate solvents from a sample through the removal of volatile components. It involves placing a sample in a round bottom flask and rotating it while under vacuum.

Read more

Downloads

Catalog of Glass Reactor

Download

Catalog of Glass Reactor

Download

Catalog of High Pressure Reactor

Download

Catalog of Laboratory Glassware

Download

Catalog of Lab Isostatic Press Machine

Download