Products Thermal Equipment Muffle Furnace

Muffle Furnace

The muffle furnace, also known as a box or chamber furnace, was referred to as a muffle furnace due to its historical usage. In the past, muffle furnaces were heated using wood, oil, and gas, but nowadays they are typically electrically heated. Additionally, modern muffle furnaces feature lightweight, high-temperature-resistant ceramic fibers as insulation material, and more intelligent and accurate thermal controllers. As a result, muffle furnaces are now among the most widely used laboratory furnaces.


What is a large box furnace use for?

Large box furnace is used for batch processing of big size material or big quantity materials, it can be used both in the laboratory experiments and industrial productions. Large box furnace with two chambers is called dual chamber furnace,two furnace chambers are working independently but share same footprint,dual chamber furnace can increase the thermal processing capacity greatly, widely used for annealing and tempering heat treatment.

Large box furnace is widely used for purpose of ashing, sintering and heat treatment, application fields include ceramic,cement,glass, and new materials researching.

Muffle furnace accessories

Muffle furnace accessories are the consuming parts with daily operation, like resistant heating wires, SiC heaters, MoSi2 heaters, insulation chambers, furnace crucibles, furnace thermal controllers, temperature sensors , etc.

KinTek - one professional of muffle furnace suppliers

Muffle furnace by KinTek has a wide range of working temperature, KT-12M series box furnace applies Cr2Al2Mo2 wire coil heating element, its working temperature is up to 1200℃.

KT-14M series box furnace applies Silicon carbide heating element, its working temperature is up to 1400℃.

KT-17M and KT18M series box furnace applies standard MoSi2 and super MoSi2 heating element working temperature is up to 1700℃ and 1800℃.

FAQ

What Are Muffle Furnace Used For?

Muffle furnaces are mainly used for high-temperature applications in industrial manufacturing and laboratory environments. They provide a controlled and insulated environment for heating materials, allowing precise temperature control. Muffle furnaces are ideal for ashing samples, heat-treating applications, and materials research. They are commonly used for melting glass, creating enamel coatings, technical ceramics, soldering, and brazing. Muffle furnaces use technology and design to achieve greater control of temperature uniformity and isolate heated materials from combustion contaminants.

What Are The Types Of Muffle Furnace?

Box furnace, tube furnace, crucible furnace, split furnace, vacuum furnace, and multi-zone furnace are some types of muffle furnaces. The choice of muffle furnace depends on the specific application and requirements of the user.

What Is Muffle Furnace In Chemistry?

A muffle furnace is a type of oven equipment used in chemistry that can reach high temperatures and provides a controlled and insulated environment for heating materials, allowing precise temperature control. It separates the object to be heated from all byproducts of combustion from the heat source. Muffle furnaces are used in solid-state reactions, such as reducing metals or creating oxides, and for limiting oxygen exposure in materials. They are also used in high-temperature chemical vapor deposition processes and are ideal for ashing samples, heat-treating applications, and materials research.

What Is The Use Of Muffle Furnace For Ash?

Muffle furnaces are commonly used for ashing samples, which involves heating materials to high temperatures to determine their percentage of ash content. This process is helpful in testing and treating materials in various industries such as cement making, foundry, and nuclear sectors. The standard muffle furnace is also used for manufacturing glass, ceramics, and other materials. Overall, muffle furnaces play a vital role in material testing and treatment at high temperatures, making them a crucial apparatus in many industries.

What Is The Temperature Of Muffle Furnace?

The temperature range of a muffle furnace is between 800°C to 1800°C, with a maximum temperature of 1473 K (1200°C; 2192°F). It is crucial to choose a furnace that will reach the desired temperature for your applications. Muffle furnaces are commonly used in metallurgy, glassmaking, ceramics, and other industries that require materials to be melted or heated to high temperatures. It usually takes approximately an hour for a muffle furnace to reach maximum temperature.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Muffle vs. Tube Furnace: How One Choice Prevents Costly Research Failures

Muffle vs. Tube Furnace: How One Choice Prevents Costly Research Failures

Choosing between a muffle and tube furnace is critical. Learn the core difference to avoid ruining experiments and wasting your lab's budget.

Read more
Why Do Your Nickel Alloys Discolor? The Four Hidden Culprits in Your Furnace and How to Defeat Them

Why Do Your Nickel Alloys Discolor? The Four Hidden Culprits in Your Furnace and How to Defeat Them

Discover the four main causes of nickel-based alloy discoloration during heat treatment and learn how the right lab equipment can ensure flawless results.

Read more
Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Discover the hidden causes of MoSi2 heating element failure, like pesting and chemical attack, and learn how to achieve reliable, repeatable results.

Read more
Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Why Your High-Temperature Furnace Elements Fail: The Critical Difference in Silicon Carbide

Furnace downtime from failing SiC heating elements costs time and money. Discover the critical material difference that ensures reliability in extreme applications.

Read more
From Crack to Complete: A Scientist's Guide to Eliminating Catastrophic Tube Furnace Failures

From Crack to Complete: A Scientist's Guide to Eliminating Catastrophic Tube Furnace Failures

Prevent costly tube furnace bursts. Learn the key causes like thermal shock and material incompatibility, and discover the right strategy to ensure safety and data integrity.

Read more
Beyond 1000°C: How Precision Furnaces Conquer the Hidden Enemy of Repeatable Results

Beyond 1000°C: How Precision Furnaces Conquer the Hidden Enemy of Repeatable Results

Struggling with inconsistent results from sintering or ashing? Discover how overcoming thermal instability with advanced muffle furnaces is key to reproducible research.

Read more
AI completes muffle furnace scientific research graphing in one minute.

AI completes muffle furnace scientific research graphing in one minute.

How to use nano banana to create scientific illustrations

Read more
How to Choose Crucible Materials That Prevent Chemical Degradation in Vacuum Induction Melting

How to Choose Crucible Materials That Prevent Chemical Degradation in Vacuum Induction Melting

Learn how to choose crucible materials for vacuum induction melting to prevent chemical degradation and optimize alloy purity. Essential guide for industrial applications.

Read more
How Vacuum Induction Melting Prevents Catastrophic Material Failures in Critical Components

How Vacuum Induction Melting Prevents Catastrophic Material Failures in Critical Components

Discover how Vacuum Induction Melting (VIM) prevents material failures in aerospace, nuclear, and EV components by eliminating atomic-level contamination.

Read more
How Vacuum Induction Melting Powers Superior Material Performance in Critical Industries

How Vacuum Induction Melting Powers Superior Material Performance in Critical Industries

Discover how Vacuum Induction Melting (VIM) ensures 99.99% pure alloys for aerospace and medical industries, boosting performance and compliance.

Read more
Why Ultra-Low Temps are Non-Negotiable: The Science Behind Preserving Critical Biological Materials

Why Ultra-Low Temps are Non-Negotiable: The Science Behind Preserving Critical Biological Materials

Discover why ultra-low temperature freezers (-86°C) are vital for preserving cells, proteins, and vaccines. Learn the science behind ULT storage best practices.

Read more
Advanced Technologies for Precision Ceramics

Advanced Technologies for Precision Ceramics

Explores key technologies and preparation methods for precision ceramic components, highlighting their applications and challenges.

Read more
Precision Ceramics in Semiconductor Applications

Precision Ceramics in Semiconductor Applications

Exploring the use of precision ceramics in semiconductor equipment, their properties, and manufacturing processes.

Read more
Precision Ceramic Injection Molding: Key Processes

Precision Ceramic Injection Molding: Key Processes

An in-depth look at the stages of precision ceramic injection molding, focusing on grouting, holding pressure, cooling, and demolding.

Read more
New Rapid Sintering Technologies for Advanced Ceramics

New Rapid Sintering Technologies for Advanced Ceramics

Explores advanced ceramic materials, their properties, and various rapid sintering techniques to enhance their performance.

Read more
Mechanical Properties and Structural Enhancements of Ceramics

Mechanical Properties and Structural Enhancements of Ceramics

An in-depth analysis of the mechanical properties of ceramics, including strengths, weaknesses, and methods for improvement.

Read more
Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Strategies to prevent sample bonding during sintering in aluminum oxide crucibles.

Read more
Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

An in-depth look at the properties, applications, and usage of alumina crucibles in powder metallurgy processes.

Read more
Recovery and Extraction of Indium Metal from ITO Target Waste Materials

Recovery and Extraction of Indium Metal from ITO Target Waste Materials

This article discusses the methods and processes for recovering high-purity indium from ITO target waste, including chemical and electrolytic purification techniques.

Read more
Laboratory Water Bath Instructions for Use

Laboratory Water Bath Instructions for Use

Guidelines for operating and maintaining laboratory water baths for safe and effective use.

Read more