Products Thermal Equipment Muffle Furnace High temperature debinding and pre sintering furnace
High temperature debinding and pre sintering furnace

Muffle Furnace

High temperature debinding and pre sintering furnace

Item Number : KT-MD

Price varies based on specs and customizations


Constant work temperature
1100/1300 ℃
Heating rate
0-20 ℃/min
Effective volume
27-512 L
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

KT-MD Debinding and pre sintering integrated furnace is widely used for debinding and pre sintering of ceramic materials with various molding processes, such as fine ceramic components of aluminum nitride, silicon nitride, aluminum oxide, zirconia and dielectric ceramics, as well as for the debinding, pre sintering and sintering integrated process of ceramic powder materials, magnetic materials, LTCC, MLCC, NTC, NFC, ceramic core and other electronic components.

High temperature debinding and pre sintering furnace detailHigh temperature debinding and pre sintering furnace detail

Features

  • Furnace body design; the furnace body adopts a stepped assembly structure, and the furnace door and furnace door frame adopt an integral design. This effectively keeps the roof from collapsing. The close fit between the furnace door and the furnace door frame makes it difficult to lose heat energy and increases the service life of the furnace door components. The furnace body is equipped with a furnace rack, which can realize hierarchical management and place materials according to the user's production needs. And the material can be fully burned.
  • Temperature control system; the heating element adopts molybdenum resistance wire and is heated on all sides. The control system adopts microcomputer artificial intelligence adjustment technology. With PID adjustment, automatic control, self-tuning function, multi-level programming. And can program various heating, keeping warm and Coolina Proarams with hiah temperature control accuracy Integrated module SCR control nhase-shift trigger protection system independent over-temperature protection, over-voltage, over-current, leakage, short-circuit protection, etc.
  • Trolley device; there is a trolley outside the furnace, and a material rack inside the car, which is convenient for taking out and placing materials after completion of production. The frame inside the furnace is made of 310S high temperature resistant stainless steel, and the frame outside the furnace is made of metal materials.

Advantages

  • 1100℃ and 1300℃ Two working temperature models are available 
  • Working chamber size can be customized according to the products requirement
  • Scientific exhaust emission air ventilating design,harmful emission can be collected safely for further processing
  • Independent fresh air preheating and circulating system, ensure a better temperature uniformity and energy saving
  • PID programmable temperature control,excellent control accuracy and stable heating performance, support remote control and centralized control 
  • Ceramic polycrystalline fiber insulation liner, less heat loss and superior energy saving efficiency
  • Professional heating elements configuration to optimize heat radiation properties, and ensure a longest service life 

Technical specifications

Furnace model KT-MD
Constant work temperature 1100/1300 ℃
Chamber material Japan alumina fiber
Heating element Cr2Al2Mo2 wire coil/Silicon Carbide
Heating rate 0-20℃/min
Temperature sensor K/S type thermal couple
Temperature controller Digital PID controller/Touch screen PID controller
Temperature control accuracy ±1℃
Electric power supply AC200-440V,50/60HZ
Standard Chamber Sizes Stocks
Chamber size  (mm) Effective volume  (L) Chamber size  (mm) Effective volume  (L)
300x300x300 27 300x300x400 36
400x400x400 64 500x500x500 125
600x600x600 216 800x800x800 512
Other sizes and volume can be customized

Standard Package

No. Description Quantity
1 Furnace 1
2 Thermal block 1
3  Crucible tong 1
4 Heat resistant glove 1
5 Operation manual 1

Optional Setup

  • Independent furnace temperature monitoring and recording
  • RS 485 communication port for PC remote control and data exporting
  • Automatic and accurate control for fresh air purge and exhaust emission ventilating system

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is Dental Furnaces?

A dental furnace, also known as a dental oven, is a piece of equipment used in the production of ceramic dental restorations such as crowns, bridges, inlays, and onlays. The furnace can reach high temperatures and pressures to process ceramic material into a hardened, final state. There are different types of dental furnaces, including ceramic combination furnaces, sintering furnaces, and glazing furnaces. Modern dental furnaces are microprocessor controlled, providing the benefit of programmability and a memory system that can remember up to 200 different programs, all of which can be executed precisely by the user.

What Are The Different Types Of Dental Furnaces?

The different types of dental furnaces include ceramic furnaces, ceramic combination furnaces, sintering furnaces, and glazing furnaces. Ceramic furnaces process conventional ceramics, ceramic combination furnaces add the ability to operate under the pressure necessary to work with pressable ceramics, sintering furnaces are capable of reaching extreme temperatures required to process zirconia, and glazing furnaces are used for setting certain stains and glazes. When selecting a dental furnace, it is important to choose one that is capable of processing the materials used in the practice or lab, is easy to clean, and is properly maintained.

What Is The Purpose Of A Vacuum Hot Press Furnace?

The purpose of a vacuum hot press furnace is to combine vacuum or atmosphere, hot pressing, and high-temperature sintering to form new materials. It can be used in the vacuum sintering of transparent ceramics, industrial ceramics, and metals, as well as the high-temperature sintering of ceramic materials such as silicon carbide and silicon nitride. Additionally, it can be used for the heat treatment of powders and compacts at a temperature lower than the melting point of the main components, which improves their strength through metallurgical combination between particles. The finished materials have improved mechanical, electronic, and thermal properties.

What Is The Temperature Of A Dental Furnace?

The temperature of a dental furnace typically ranges between 600°C and 1600°C. The firing result obtained is influenced by the accuracy of the actual temperature. Different dental furnaces can have identical digital external displays, yet different results regarding the degree of firing can be identified when processing the same ceramics under otherwise similar conditions. The International Standard levels the currently existing differences between the final calibration of the dental furnaces based on the factory of origin through a final adjustment of the temperature control in the firing chamber by means of a thermocouple at e.g. 800°C.

What Are The Advantages Of A Vacuum Hot Press Furnace?

Advantages of a vacuum hot press furnace include hot pressing sintering of metal and ceramic powders, preparation of ceramic/metal composites and intermetallic compounds, research and development of diffusion welding process, and densification hot press sintering of oxygen/nitrogen/boron/carbon compounds and their mixtures. The high temperature and pressure under vacuum or atmosphere help to bond raw materials solid particles together, decrease voids and grain boundaries, and improve the mechanical, electronic, and thermal properties of finished materials.

What Is The Use Of Porcelain Furnace?

A porcelain furnace is used in dentistry to create dental porcelain, which is an unglazed ceramic material used for dental restorations such as crowns and veneers. The furnace heats the ceramic material until it is soft enough to shape, and then it is cooled and polished to create the desired tooth pattern. There are two main types of dental porcelain furnace systems: direct-fired or cold-press fired, and hot-pressed or heat-fused fired. Direct-fired technology uses an external source to directly fire the ceramic material, making it more cost-effective than indirect-fired technologies.

How Does A Vacuum Hot Press Furnace Work?

A vacuum hot press furnace is a piece of equipment that combines vacuum, hot pressing, and high-temperature sintering. It works by heating and pressurizing materials under vacuum or atmosphere to create a compact polycrystalline sintered body with improved mechanical, electronic, and thermal properties. The furnace is composed of several systems including furnace body, heating and heat preservation, temperature measurement system, vacuum system, air charging system, water cooling system, control system, and pressure system. Heating elements can be graphite heater, molybdenum heater, or induction heating, and one-way or two-way pressurization can be used for hydraulic pressurization.

What Are The Common Applications Of Vacuum Hot Press Furnaces?

Vacuum hot press furnaces have various applications in industries such as aerospace, automotive, electronics, and materials research. They are used for the production of advanced ceramics, such as ceramic matrix composites and sintered carbides, which are used in high-temperature applications. These furnaces are also utilized for the fabrication of metallic alloys, superalloys, and intermetallic compounds with tailored properties. Vacuum hot press furnaces play a crucial role in the production of diamond tools and cutting inserts, as well as in the development of advanced electronic materials and components. Additionally, these furnaces are employed in research laboratories for the synthesis and processing of novel materials with unique properties.

What Factors Should Be Considered When Selecting A Vacuum Hot Press Furnace?

When selecting a vacuum hot press furnace, several factors need to be considered. Firstly, the size and capacity of the furnace should align with the intended application and production requirements. The furnace should accommodate the size and number of samples or components to be processed. The heating and pressure capabilities of the furnace should also be evaluated to ensure they meet the desired temperature and pressure conditions. It is important to consider the level of automation and control systems available, as well as the compatibility with specific materials and processes. Additionally, the reliability, service support, and overall cost of ownership should be assessed. Consulting with manufacturers and experts in the field can help in selecting the most suitable vacuum hot press furnace for specific processing needs.
View more faqs for this product

4.9

out of

5

KT-MD furnace is a game-changer! It's incredibly efficient and precise, saving us time and resources.

Aiden Thompson

4.7

out of

5

The furnace's customizable chamber size and precise temperature control make it perfect for our research projects.

Mariko Sato

4.8

out of

5

KT-MD's integrated design streamlines our debinding and pre-sintering processes, improving productivity.

Lucas Rodriguez

4.9

out of

5

The furnace's advanced safety features give us peace of mind during high-temperature operations.

Isabelle Dubois

4.7

out of

5

Excellent customer service from KINTEK SOLUTION. They answered all our queries promptly and helped us choose the right furnace.

Liam Brown

4.8

out of

5

The furnace's durability and low maintenance requirements make it a cost-effective investment.

Aisha Khan

4.9

out of

5

KT-MD's user-friendly interface and remote control capabilities enhance our lab's efficiency.

Oliver Chen

4.7

out of

5

The furnace's ability to handle various materials makes it versatile for our diverse research needs.

Sophia Martinez

4.8

out of

5

KINTEK SOLUTION's customization options allowed us to tailor the furnace to our specific requirements.

Elijah Hall

4.9

out of

5

The furnace's energy-saving features help us reduce our lab's carbon footprint.

Ava Johnson

4.7

out of

5

The furnace's compact design saves valuable lab space, making it ideal for our small research facility.

Jackson Kim

4.8

out of

5

KT-MD's fast heating and cooling rates accelerate our research processes, allowing us to achieve more in less time.

Isabella Garcia

PDF - High temperature debinding and pre sintering furnace

Download

Catalog of Muffle Furnace

Download

Catalog of Dental Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Mesh belt controlled atmosphere furnace

Mesh belt controlled atmosphere furnace

Discover our KT-MB mesh belt sintering furnace - perfect for high-temperature sintering of electronic components & glass insulators. Available for open air or controlled atmosphere environments.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

1200℃ Muffle furnace

1200℃ Muffle furnace

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

1700℃ Controlled atmosphere furnace

1700℃ Controlled atmosphere furnace

KT-17A Controlled atmosphere furnace: 1700℃ heating, vacuum sealing technology, PID temperature control, and versatile TFT smart touch screen controller for laboratory and industrial use.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

1700℃ Tube furnace with Alumina tube

1700℃ Tube furnace with Alumina tube

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

1200℃ Controlled atmosphere furnace

1200℃ Controlled atmosphere furnace

Discover our KT-12A Pro Controlled atmosphere furnace - high precision, heavy duty vacuum chamber, versatile smart touch screen controller, and excellent temperature uniformity up to 1200C. Ideal for both laboratory and industrial application.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

1200℃ Split Tube furnace with quartz tube

1200℃ Split Tube furnace with quartz tube

KT-TF12 split tube furnace: high-purity insulation, embedded heating wire coils, and max. 1200C. Widely used for new materials and chemical vapour deposition.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Related Articles

Rotary Furnaces: Advanced Materials Processing and Applications

Rotary Furnaces: Advanced Materials Processing and Applications

Rotary furnaces are versatile and efficient thermal processing systems used in various industries. This comprehensive guide explores the basics of rotary furnaces, their applications, advantages, and key components. Discover how rotary furnaces contribute to advanced materials processing and enhance productivity.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
Infrared Heating Quantitative Flat Plate Mold: Design, Applications, and Benefits

Infrared Heating Quantitative Flat Plate Mold: Design, Applications, and Benefits

Explore the advanced design and applications of infrared heating quantitative flat plate molds. Learn about their benefits in achieving uniform heat distribution and efficient processing.

Find out more
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

Find out more
Understanding the Design and Functionality of Industrial Furnaces

Understanding the Design and Functionality of Industrial Furnaces

Industrial furnaces are heating devices used in various industrial processes, including soldering, heat treatment of steels and alloys, and ceramics sintering.

Find out more
Understanding the Dry Bag Cold Isostatic Press Machine by KinTek

Understanding the Dry Bag Cold Isostatic Press Machine by KinTek

Powder metallurgy is a manufacturing route that allows for the production of specific materials, especially for high-performance applications. It reduces material waste and produces parts that are close to the final shape. KinTek's CIP equipment has been successfully used to consolidate most common metals, and there is a growing interest in using it for metal powder processing in a wider range of applications.

Find out more
Comprehensive Guide to Muffle Furnaces: Applications, Types, and Maintenance

Comprehensive Guide to Muffle Furnaces: Applications, Types, and Maintenance

Explore the world of muffle furnaces with our detailed guide. Learn about their applications in various industries, types available, and essential maintenance tips to ensure optimal performance.

Find out more
Dental Furnaces The Perfect Solution for Porcelain Processing

Dental Furnaces The Perfect Solution for Porcelain Processing

The dental furnaces are designed explicitly for the firing process of dental porcelain, which is a crucial step in the dental restoration process.

Find out more
Comprehensive Guide to Vacuum Hot Press Furnace Application

Comprehensive Guide to Vacuum Hot Press Furnace Application

The Vacuum Hot Press Furnace is a versatile tool especially suited for sintering experiments involving non-metallic materials, carbon composites, ceramic materials and metal powder materials.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Comprehensive Guide to Muffle Furnaces: Types, Uses, and Maintenance

Comprehensive Guide to Muffle Furnaces: Types, Uses, and Maintenance

Explore the world of muffle furnaces with our detailed guide. Learn about their types, applications in various industries, and essential maintenance tips to ensure optimal performance.

Find out more
Understanding the Warm Isostatic Press: Operating Temperatures and Their Impact on Molding Quality and Efficiency

Understanding the Warm Isostatic Press: Operating Temperatures and Their Impact on Molding Quality and Efficiency

Warm isostatic pressing (WIP) is a variant of cold isostatic pressing (CIP) that includes a heating element. It employs warm water or a similar medium to apply uniform pressure to powdered products from all directions. WIP is a cutting-edge technology that enables isostatic pressing at a temperature that does not exceed the boiling point of the liquid medium. This process typically involves utilizing flexible materials as a jacket mold and hydraulic pressure as a pressure medium to shape and press the powder material.

Find out more