What are the main types of glass materials available?
The main types of glass materials include Alkali-free/Boro-aluminosilicate glass, Optical ultra-clear glass, K9 quartz glass, Soda-lime optical glass, High-temperature resistant optical quartz glass, Glass oscillating beads, High borosilicate glass stirring rods, Glassy carbon sheets, Infrared silicon lenses, Glassy carbon electrodes, Glass tissue grinders, Micro-injectors, Lab pellet presses, and PTFE measuring cylinders.
What is laboratory vacuum pump?
A laboratory vacuum pump is a tool used to create a low-pressure environment inside a closed system, allowing various scientific processes such as vacuum filtration, aspiration, and solvent evaporation. They work by removing gas molecules from a sealed volume, creating a partial or complete vacuum. There are different types of vacuum pumps used in laboratory applications, including rotary vane, diaphragm, and scroll vacuum pumps.
What is a homogenizer and what are its main applications?
A homogenizer is a laboratory device used for mixing, emulsifying, and breaking down particles in a sample to achieve a uniform mixture. Its main applications include microbial inactivation, emulsification in food and medicine production, cell fractionation in biotech industries, and facilitating stable emulsions and dispersions.
What are the main types of laboratory glassware?
The main types of laboratory glassware include stirring rods, oscillating beads, optical glass sheets, single and jacket glass reactors, specimen jars, PTFE flasks, glass tissue grinders, PTFE volumetric flasks, PTFE measuring cylinders, PTFE triangular bottles, PTFE reagent bottles, PTFE sampling spoons, and constant temperature heating magnetic stirrers.
What is a tablet punching machine?
A tablet punching machine, also known as a tablet press, is a piece of machinery used to compress powder into tablets of uniform shape and size. It is widely used in industries such as pharmaceuticals, cosmetics, food, and chemicals.
What are the main types of glass substrates?
The main types of glass substrates include soda-lime glass, sapphire, boroaluminosilicate glass, optical quartz glass, K9 glass, CaF2 substrate, magnesium fluoride crystal substrate, and silicon.
What are the applications of borosilicate glass?
Borosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils. It is also used in optical applications due to its clarity and durability.
What is the purpose of vacuum pump in laboratory?
The purpose of a laboratory vacuum pump is to aid in a wide variety of research applications. It is mainly used to provide suction for filtration or aspiration of liquid samples and regulate solvent evaporation by reducing vapor pressure. It can also improve instrument-detection sensitivity, collect gas samples, and provide a negative pressure environment to prevent potentially hazardous sample materials from escaping. Vacuum pumps are designed to move air or vapors, not liquids or suspensions. They are an adaptable tool that can be useful to many research scientists and engineers.
What is an electrode in electrochemistry?
An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.
What are the different types of homogenizers available?
There are several types of homogenizers, including blade type homogenizers, high-pressure homogenizers, and ultrasonic homogenizers. Blade type homogenizers use high-speed rotating blades to create shearing effects. High-pressure homogenizers use homogenization valves and high-pressure pumps to force substances through small tubes or valves. Ultrasonic homogenizers use ultrasonic cavitation to disrupt components.
What are the applications of laboratory glassware?
Laboratory glassware is used in various applications such as chemical experiments, preventing zeolite formation, optical applications, synthetic reactions, distillation, filtration, specimen preservation, handling corrosive substances, high-temperature applications, and precise temperature control and mixing in laboratory settings.
What is milling equipment used for?
Milling equipment is used for the precise shaping, sizing, and finishing of various materials. It is commonly employed in manufacturing processes to remove excess material, create complex shapes, and achieve tight tolerances. Milling machines are versatile tools capable of performing tasks such as cutting, drilling, boring, and contouring.
What are the main types of tablet punching machines?
The main types of tablet punching machines include lab scale rotary tablet punching machines, single punch manual tablet punching machines, single punch electric tablet punching machines, mass production rotary tablet punching machines, and automatic lab pellet press machines.
What is a glass reactor?
A glass reactor is a laboratory instrument used to facilitate chemical reactions. It provides an environment conducive for reactions and holds the reactants in place, while also allowing for easy monitoring of the progress of the reaction. There are two main types of glass reactors: batch reactors and continuous reactors. Batch reactors are smaller in size and can only handle small quantities of reactants, while continuous reactors allow for the pouring of reactants into the reaction chamber continuously and can handle larger volumes of reactants. Glass reactors are used in a variety of applications, from chemical synthesis to environmental and life science research.
What is a thermal element?
A thermal element is a device that converts electrical energy into heat in order to raise the temperature of an object or space. There are several types of thermal elements, including tubular heating elements, radiative heating elements, and combination heating element systems. Heat transfer occurs through thermal resistance and thermal capacitance, and there are three sources of heat: a power source, a temperature source, and fluid flow. Thermal elements are commonly used in laboratory equipment, as well as in various domestic and industrial applications.
How are high-purity graphite crucibles made?
High-purity graphite crucibles are typically manufactured through a process called isostatic pressing. In this method, graphite powder is placed in a rubber mold, and then subjected to high pressure from all directions. This pressure compacts the graphite particles into a dense and uniform crucible shape. The crucible is then heated to a high temperature to remove any impurities and improve its purity.
What is soda-lime glass used for?
Soda-lime glass is widely used as an insulating substrate for thin and thick film deposition in various applications due to its uniform thickness and exceptionally flat surfaces.
What is a high pressure reactor?
A high-pressure reactor is an equipment designed to perform chemical reactions or other processes under elevated pressure and temperature conditions. It is used in various industries, such as chemical, petrochemical, pharmaceutical, and materials science, to carry out processes requiring high pressure or temperatures. It includes a pressure vessel, closure, temperature, and pressure control, stirring or mixing mechanism, and ports or connections. High-pressure reactors are useful in studying reaction kinetics, performing catalytic reactions, synthesizing new materials, and developing novel chemical processes. They come in various sizes and designs, with temperature control and agitation options, making them suitable for a wide range of reactions.
What are the advantages of using optical glass in laboratory settings?
Optical glass is manufactured using specific chemicals that enhance properties crucial for optics applications, such as clarity, refractive index, and durability. It is widely used in telecommunications, astronomy, and other fields requiring precise light manipulation.
What is the use of pump in laboratory?
Pumps are commonly used in laboratories to provide suction for the filtration or aspiration of samples, and to reduce vapor pressure in instruments such as rotary evaporators and lab ovens. Liquid pumps, including syringe, peristaltic, and metering pumps, are used to dispense and transfer fluids. When choosing a laboratory pump, it is important to determine the type of pump that best fits the research needs, such as the required level of vacuum for evaporative applications or freeze drying. Overall, laboratory pumps are adaptable tools that aid a wide range of research scientists and engineers in various applications.
What are the 3 electrodes in electrochemistry?
The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.
How does a homogenizer work?
A homogenizer works by applying three fundamental physical principles: shearing, cavitation, and turbulence. Shearing reduces the size of large particles and droplets by friction between fluid layers moving at different speeds. Cavitation occurs when a fluid experiences a significant pressure reduction, causing the formation and collapse of tiny vapor pockets that generate shockwaves to break particles. Turbulence helps in mixing and dispersing the particles uniformly.
What are the advantages of using borosilicate glass in laboratory glassware?
The advantages of using borosilicate glass in laboratory glassware include excellent optical properties, a smooth surface for clear visibility, and the option for added protection through transect coatings, which enhance the efficiency of inspection processes.
What are the different types of milling equipment?
There are several types of milling equipment, including vertical milling machines, horizontal milling machines, and gantry milling machines. Vertical milling machines have a vertically oriented spindle that moves the cutting tool up and down. Horizontal milling machines have a horizontally oriented spindle and are typically used for larger, heavy-duty applications. Gantry milling machines have a bridge-like structure that supports the spindle and allows for precise movement in multiple directions.
What is the principle of a tablet punching machine?
The principle of a tablet punching machine involves compression. The machine uses two punches and a die to compress powder into tablets. The upper and lower punches strike together in the die, applying high force to bond the granulated material into a hard tablet.
What are the advantages of glass reactor?
The advantages of glass reactors are their ability to optimize and replicate chemical reactions, and provide a clear view of the reaction process. They are corrosion-resistant, work with different atmospheric pressures and vacuum, and can be used for a variety of applications such as catalytic research, process engineering, and biomass research. Glass reactors are also designed with safety in mind, allowing for safe processing of solvents and acids. Other benefits include the availability of various options such as heating/cooling systems, vacuum pumps, PH probes, and pressure gauges.
How does a thermal element work?
A thermal element works by converting electrical energy into heat through the process of Joule heating. When an electric current flows through the element, it encounters resistance, and this results in heating of the element. Metal and ceramic heating elements operate on the principle of electric resistance heating, generating heat by resisting the flow of electricity through the material. The coefficient of electrical resistance of the material determines its ability to generate heat proportional to the amount of current flowing through it. The generated heat radiates outwards into the heat treatment chamber, making thermal elements a highly effective method of generating heat.
What are the common applications of high-purity graphite crucibles?
High-purity graphite crucibles have a wide range of applications in industries such as metallurgy, foundries, and laboratories. They are commonly used for melting and casting non-ferrous metals, including aluminum, copper, and precious metals. High-purity graphite crucibles are also utilized in the production of alloys and high-temperature ceramics. They are essential in processes such as chemical analysis, spectroscopy, and sample preparation in laboratories. Additionally, these crucibles find applications in the semiconductor industry for the melting and growing of silicon and other semiconductor materials.
What are the advantages of using sapphire substrates?
Sapphire substrates offer unparalleled chemical, optical, and physical properties. They are highly resistant to thermal shocks, high temperatures, sand erosion, and water, making them ideal for demanding applications.
What causes an increase in pressure within a high-pressure reactor?
Increasing pressure inside a pressure reactor can be achieved through various means. One common method is by heating a sealed pressure vessel, where temperature and pressure increase proportionately, impacting reaction kinetics. Alternatively, the reaction occurring inside the vessel can induce pressure, and agitation can accelerate this process.
In situations where heating is unsuitable or insufficient pressure is generated, manual pressurization is possible with a compressed gas source, such as a compressor or a pre-compressed canister of inert gas.
Pressure reactors utilize pressure relief valves to safely regulate and maintain pressure, emphasizing their reliable and safe operation.
How is soda-lime glass manufactured, and what are its applications?
Soda-lime glass is created by floating molten glass on molten tin, ensuring uniform thickness and exceptionally flat surfaces. It is widely favored as an insulating substrate for thin/thick film deposition in laboratory settings.
What is used in a laboratory to form and contain a vacuum?
A laboratory vacuum pump is used to form and contain a vacuum by removing air or gas molecules from a sealed chamber or system. The vacuum pump creates negative pressure, which can be used for a variety of applications such as filtration, aspiration of liquid or suspended samples, and solvent evaporation. Different types of pumps, including rotary vane, diaphragm, and turbomolecular pumps, are available, and the choice depends on the required vacuum level and the specific application. It's important to choose the right vacuum pump for the intended use to ensure optimal performance and reliability.
What are the different types of electrochemical electrodes?
There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.
What are the advantages of using a homogenizer in laboratory settings?
The advantages of using a homogenizer include precise sample preparation, efficient mixing and emulsification, preservation of molecular composition in samples, and the ability to mix naturally immiscible materials. It is particularly useful in fields such as biology, chemistry, pharmaceuticals, and food science for achieving uniform and consistent results.
How does borosilicate glass enhance the efficiency of laboratory processes?
Borosilicate glass enhances the efficiency of laboratory processes by providing a smooth surface that offers excellent visibility, allowing for better inspection and monitoring of reactions and experiments. Its optical properties make it a preferred material over plastics, metals, and other building materials.
What materials can be processed using milling equipment?
Milling equipment can process a wide range of materials, including metals, plastics, composites, and wood. Common metals processed using milling machines include steel, aluminum, brass, and titanium. Plastics such as acrylic, PVC, and nylon can also be milled. Additionally, milling equipment can shape and finish composite materials like carbon fiber and fiberglass, as well as wood and other organic materials.
What are the applications of tablet punching machines?
Tablet punching machines are used in various industries including pharmaceuticals, cosmetics, nutraceuticals, fitness, herbs, confectionary, industrial pellets manufacturing, cleaning products, and mining.
What material is glass reactor?
The glass reactor is made of borosilicate glass and has excellent physical and chemical properties. The borosilicate glass is highly resistant to thermal shock, chemical corrosion, and mechanical impacts, making it ideal for use in laboratory equipment. The glass is also transparent, allowing for easy observation of the reaction inside the vessel. The glass reactor is designed to withstand high temperatures and pressure, and it is used in various industries such as petrochemical, pharmaceutical, and dye, among others.
What are the advantages of using thermal elements?
Thermal elements offer several advantages in temperature measurement. Firstly, they have a wide temperature range, allowing for accurate measurements across a broad spectrum, from extremely low temperatures to high temperatures. They also have high sensitivity, meaning they can detect even small temperature changes. Additionally, thermal elements have excellent stability and repeatability, providing reliable and consistent temperature readings over time. They are rugged and durable, making them suitable for use in harsh environments. Thermal elements can also be easily integrated into various systems and instruments for temperature monitoring and control.
What factors should be considered when selecting high-purity graphite crucibles?
When selecting high-purity graphite crucibles, several factors should be considered. Firstly, the size and capacity of the crucible should align with the intended application and the amount of material to be melted or processed. The crucible's thermal conductivity, thermal shock resistance, and chemical compatibility should be evaluated to ensure they meet the specific process requirements. It is important to select crucibles made from high-quality graphite material with high purity levels to minimize contamination and ensure excellent performance. The crucible's design and construction should also be considered, such as the presence of handles or pouring spouts for easy handling. Additionally, it is advisable to consult with manufacturers or experts in the field to ensure the selection of the most suitable high-purity graphite crucibles for specific applications.
Why is boroaluminosilicate glass suitable for laboratory glassware and cooking utensils?
Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.
How does a pressure reactor work?
A pressure reactor is a laboratory device used to conduct chemical reactions at high pressure. It works by controlling the pressure within the reactor vessel, allowing researchers to increase the pressure to desired levels and monitor the reaction as it occurs. The high-pressure environment can alter the reaction rate and outcome, making pressure reactors an essential tool for understanding the underlying mechanisms of chemical reactions. Pressure reactors are designed with safety in mind, featuring high-quality pressure-resistant materials, automatic pressure control systems, and leak-detection systems. They come in various sizes and designs, making them suitable for a wide range of reactions.
What makes K9 quartz glass suitable for optical applications?
K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, including high clarity and precise refractive index, making it ideal for various optical applications.
How does a laboratory vacuum pump work?
A laboratory vacuum pump works by removing gas molecules from a sealed volume, creating a partial or complete vacuum. The pump creates a difference in pressure between the system and the outside atmosphere, causing gas molecules to move toward the pump and away from the system. As molecules are removed from the vacuum space, it becomes harder to remove additional ones, thus increasing the vacuum power required. Different types of vacuum pumps are used depending on the application, including rotary vane, diaphragm, and scroll vacuum pumps. Vacuum pumps are classified by the pressure range they can achieve to distinguish their capabilities.
What materials are commonly used for electrochemical electrodes?
Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.
Can you explain the application of homogenizers in microbial inactivation?
Homogenizers are used for microbial inactivation by mechanically destroying the cell wall of vegetative bacteria through processes like turbulence, impingement, spatial pressure, and velocity gradients. This method is particularly effective in food and medicine production, where it provides an alternative to heat treatment or pasteurization, which can degrade product quality.
What makes PTFE glassware suitable for handling corrosive substances?
PTFE glassware is suitable for handling corrosive substances due to its exceptional chemical resistance, temperature stability, and non-stick properties. These features make PTFE flasks, cylinders, and bottles ideal for use in laboratories where corrosive chemicals are involved.
How does milling equipment work?
Milling equipment operates by rotating a cutting tool, typically a multi-point cutter, against the workpiece. The cutting tool removes material from the workpiece as it moves along various axes. The movement of the cutting tool and the workpiece can be controlled manually or through computer numerical control (CNC) systems. The cutting tool may have different geometries, such as end mills, ball mills, or face mills, depending on the desired outcome. The precise control of the cutting tool's movement allows for the creation of intricate shapes, precise dimensions, and smooth surface finishes.
What are the advantages of using a tablet punching machine?
The advantages of using a tablet punching machine include uniform tablet size and shape, efficient production, easy operation, and the ability to produce tablets of various shapes and sizes. Additionally, the machines are designed for safety and ease of cleaning.
What are the different types of glass reactors?
Different types of glass reactors include single-layer, double-layer, and three-layer glass reactors. Other types of reactors include glass-lined reactors, hydrothermal synthesis reactors, magnetic stirring reactors, electric heating reactors, and steam reactors. Glass reactors are commonly used in high and low-temperature reactions, vacuum reactions, solvent synthesis at a constant temperature, distillation and reflux reactions, vacuum distillation reactions, extraction separation reactions, purified reactions, and concentration reactions.
What are the different types of thermal elements?
There are several types of thermal elements, including thermocouples, resistance temperature detectors (RTDs), and thermistors. Thermocouples are made of two dissimilar metals joined together, and they generate a voltage proportional to the temperature difference between their junctions. RTDs are made of pure metals, such as platinum or copper, and their resistance changes with temperature. Thermistors are made of temperature-sensitive semiconducting materials and have a large change in resistance with temperature.
What are the applications of optical quartz glass sheets?
Optical quartz glass sheets are used for precise light manipulation in various fields including telecommunications, astronomy, and optical technology due to their exceptional clarity and tailored refractive properties.
What are the benefits of using PTFE measuring cylinders in laboratories?
PTFE cylinders are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance, and maintain a low coefficient of friction, ensuring ease of use and cleaning. They are a rugged alternative to traditional glass cylinders.
What factors should be considered when selecting an electrochemical electrode?
When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.
How does homogenization affect the quality of milk?
Homogenization of milk involves distributing and shrinking the milk fat globules so that they are evenly dispersed throughout the milk. This process not only improves the consistency and texture of milk but also prolongs its shelf life by preventing the separation of fat from the liquid.
What are the advantages of using milling equipment?
Milling equipment offers several advantages in manufacturing processes. Firstly, it allows for the precise removal of excess material, resulting in accurate and consistent part dimensions. Secondly, milling machines can create complex shapes and features that would be challenging or impossible to achieve using other methods. Thirdly, milling equipment provides high productivity, as it can remove material quickly and efficiently. Additionally, modern CNC milling machines offer automation and programming capabilities, reducing manual labor and increasing efficiency. Lastly, milling equipment provides versatility, as it can be used for a wide range of materials and applications.
How does a manual tablet press work?
A manual tablet press works by coordinating the movement of the upper punch, middle die, and lower punch. The upper punch is installed in the upper die hole, the middle die in the middle layer, and the lower punch in the lower die hole. The turntable rotates, causing the punches to move up and down regularly along a fixed track, compressing the powder into tablets.
What temperature should a glass reactor be?
The temperature range of a glass reactor may vary depending on the model and its intended use. In general, glass reactors can operate at temperatures as low as -80°C and as high as 300°C. However, the optimal working temperature will depend on the specific reaction being conducted and the chemicals being used. It is important to carefully monitor and control the temperature of the glass reactor to ensure the safety and effectiveness of the reaction.
How should thermal elements be calibrated and maintained?
Calibration and maintenance of thermal elements are crucial to ensure their accuracy and reliability. Regular calibration should be performed using certified reference thermometers or temperature standards to verify the accuracy of temperature readings. Calibration intervals may vary depending on the application and industry requirements. Proper storage and handling of the thermal elements are important to prevent damage or contamination. It is recommended to protect the elements from extreme temperatures, moisture, and corrosive substances. Regular inspection of the element's connections, insulation, and protective sheaths should be carried out, and any damage or wear should be addressed promptly. Proper cleaning of the elements, if required, should be done following manufacturer guidelines. It is important to follow the manufacturer's recommendations for maintenance and consult with experts when necessary.
What makes K9 glass special?
K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, making it suitable for various optical applications.
Why is glass a preferred material for laboratory equipment?
Glass has a smooth surface that offers an excellent view of what is going on inside the equipment, enhancing the efficiency of inspection in each process. It is also clear and provides good optical properties, making it a preferred material for laboratory equipment.
How can electrochemical electrodes be used in various applications?
Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.
What factors should be considered when selecting milling equipment?
Several factors should be considered when selecting milling equipment. These include the required machining capabilities, such as the size and complexity of the parts to be produced, as well as the desired precision and surface finish. The type of material to be processed is also crucial, as different milling machines may be better suited for specific materials. Other factors to consider include the available workspace, the required spindle speed and power, the availability of tooling and accessories, as well as the budget and maintenance requirements. It is important to choose milling equipment that aligns with the specific machining needs and production goals to ensure optimal performance and cost-effectiveness.
What industries benefit from using tablet punching machines?
Tablet punching machines benefit industries such as pharmaceuticals, cosmetics, food, chemicals, nutraceuticals, fitness, herbs, confectionary, industrial pellets manufacturing, cleaning products, and mining.
What is a CaF2 window used for?
A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable, and resistant to laser damage, making them suitable for a wide range of optical applications.
What safety features are included in tablet punching machines?
Tablet punching machines include safety features such as all moving parts covered with stainless steel (SS) coverings, heavy-duty structure made from painted material to avoid vibration, and easily dismantled contact parts for cleaning.
What are the properties of magnesium fluoride crystal substrates?
Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.
Why has the tablet press evolved over time?
The tablet press has evolved due to the development of innovations and research driven by an increase in population and demand for tablets. Additionally, stringent regulations to comply with Current Good Manufacturing Process (CGMP) have influenced the evolution of tablet presses.
What is silicon used for in the near-infrared range?
Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.
What are glass vibration beads used for in laboratories?
Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation, making them useful in various experimental setups.
REQUEST A QUOTE
Our professional team will reply to you within one business day. Please feel free to contact us!