Products Lab Consumables & Materials Glass material Glass Oscillating Beads Laboratory Zeolite Transparent Glass Balls
Glass Oscillating Beads Laboratory Zeolite Transparent Glass Balls

Glass material

Glass Oscillating Beads Laboratory Zeolite Transparent Glass Balls

Item Number : KTG-4

Price varies based on specs and customizations


Product materia
high-quality glass
Product attributes
Product attributes
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

Glass beads are spherical particles with smooth surface and good finish. Made of non-alkaline soda-lime glass, it has good chemical stability and will not contaminate the processed metal. It can speed up cleaning while maintaining the processing accuracy between the original objects.

Detail & Parts

Glass oscillating beads details

Glass oscillating beads details

Technical specifications

Diameter Whole package weight Packaging
2.5mm 18.68g 1000 pcs/pack
3mm 39.92g 1000 pcs/pack
4mm 81.58g 1000 pcs/pack
4.5mm 123.57g 1000 pcs/pack
5mm 159.39g 1000 pcs/pack
6mm 281.06g 1000 pcs/pack
7mm 451.38g 1000 pcs/pack

Applications

Glass vibration beads, also known as anti-zeolite transparent glass balls, are primarily used in laboratory settings for various applications. These beads are made from borosilicate glass, known for its high chemical and thermal resistance, making it ideal for use in environments where stability and durability are crucial. Below are the main application areas of glass vibration beads:

  • Bioremediation Studies: Glass beads are used in reactors for bioremediation studies, where microorganisms are employed to remove pollutants from the environment. They help in studying the growth of pollutant-degrading microorganisms and optimizing conditions for effective remediation.
  • Continuous Bioprocessing: In continuous bioprocessing, glass beads in reactors offer advantages such as improved productivity, reduced footprint, and enhanced process control. This is particularly important in biotechnology where long-duration processes are common.
  • Anisotropic Glasses: Through Physical Vapor Deposition (PVD), glass beads can be used to create anisotropic glasses of low molecular weight for organic semiconductors. This process involves the controlled deposition of molecules to form a glass with anisotropic characteristics, enhancing charge carrier mobility.
  • Laboratory Glassware: Due to their chemical and thermal resistance, glass beads are used in the manufacture of laboratory glassware such as beakers, vials, and pre-filled syringes. They are also used in the production of implantable medical devices and dental composite materials.
  • Safety and Compatibility: Glass beads ensure chemical compatibility with various lab equipment, reducing the risk of unwanted degradation. They are also used in safety measures, such as in fume hoods or other forms of explosion-proof ventilation systems, to manage potentially hazardous vapors.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What are the main types of laboratory glassware?

The main types of laboratory glassware include stirring rods, oscillating beads, optical glass sheets, single and jacket glass reactors, specimen jars, PTFE flasks, glass tissue grinders, PTFE volumetric flasks, PTFE measuring cylinders, PTFE triangular bottles, PTFE reagent bottles, PTFE sampling spoons, and constant temperature heating magnetic stirrers.

What are the main types of glass materials available?

The main types of glass materials include Alkali-free/Boro-aluminosilicate glass, Optical ultra-clear glass, K9 quartz glass, Soda-lime optical glass, High-temperature resistant optical quartz glass, Glass oscillating beads, High borosilicate glass stirring rods, Glassy carbon sheets, Infrared silicon lenses, Glassy carbon electrodes, Glass tissue grinders, Micro-injectors, Lab pellet presses, and PTFE measuring cylinders.

What are the main types of glass substrates?

The main types of glass substrates include soda-lime glass, sapphire, boroaluminosilicate glass, optical quartz glass, K9 glass, CaF2 substrate, magnesium fluoride crystal substrate, and silicon.

What is the primary material used for glass vibration beads?

The glass vibration beads are typically made from borosilicate glass, known for its low thermal expansion coefficient and high resistance to thermal shock and chemical corrosion.

How does borosilicate glass benefit the performance of vibration beads?

Borosilicate glass offers several advantages: Low Thermal Expansion: Reduces stress from temperature changes, making it more durable. High Chemical Resistance: Withstands corrosive environments, ensuring longevity and reliability. Optical Clarity: Provides a clear view inside the equipment, enhancing inspection efficiency.

How to ensure the service life of glass vibration beads?

Proper handling: Avoid dropping or hitting the beads. Temperature control: Avoid exposing the beads to extreme temperature fluctuations. Regular cleaning: Clean the beads regularly with appropriate solvents to maintain their integrity and performance.

What are the applications of laboratory glassware?

Laboratory glassware is used in various applications such as chemical experiments, preventing zeolite formation, optical applications, synthetic reactions, distillation, filtration, specimen preservation, handling corrosive substances, high-temperature applications, and precise temperature control and mixing in laboratory settings.

What are the applications of borosilicate glass?

Borosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils. It is also used in optical applications due to its clarity and durability.

What is a glass reactor?

A glass reactor is a laboratory instrument used to facilitate chemical reactions. It provides an environment conducive for reactions and holds the reactants in place, while also allowing for easy monitoring of the progress of the reaction. There are two main types of glass reactors: batch reactors and continuous reactors. Batch reactors are smaller in size and can only handle small quantities of reactants, while continuous reactors allow for the pouring of reactants into the reaction chamber continuously and can handle larger volumes of reactants. Glass reactors are used in a variety of applications, from chemical synthesis to environmental and life science research.

What is soda-lime glass used for?

Soda-lime glass is widely used as an insulating substrate for thin and thick film deposition in various applications due to its uniform thickness and exceptionally flat surfaces.

What is a high pressure reactor?

A high-pressure reactor is an equipment designed to perform chemical reactions or other processes under elevated pressure and temperature conditions. It is used in various industries, such as chemical, petrochemical, pharmaceutical, and materials science, to carry out processes requiring high pressure or temperatures. It includes a pressure vessel, closure, temperature, and pressure control, stirring or mixing mechanism, and ports or connections. High-pressure reactors are useful in studying reaction kinetics, performing catalytic reactions, synthesizing new materials, and developing novel chemical processes. They come in various sizes and designs, with temperature control and agitation options, making them suitable for a wide range of reactions.

What is a thermal element?

A thermal element is a device that converts electrical energy into heat in order to raise the temperature of an object or space. There are several types of thermal elements, including tubular heating elements, radiative heating elements, and combination heating element systems. Heat transfer occurs through thermal resistance and thermal capacitance, and there are three sources of heat: a power source, a temperature source, and fluid flow. Thermal elements are commonly used in laboratory equipment, as well as in various domestic and industrial applications.

What is an electrode in electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What are the advantages of using borosilicate glass in laboratory glassware?

The advantages of using borosilicate glass in laboratory glassware include excellent optical properties, a smooth surface for clear visibility, and the option for added protection through transect coatings, which enhance the efficiency of inspection processes.

What are the advantages of using optical glass in laboratory settings?

Optical glass is manufactured using specific chemicals that enhance properties crucial for optics applications, such as clarity, refractive index, and durability. It is widely used in telecommunications, astronomy, and other fields requiring precise light manipulation.

What are the advantages of glass reactor?

The advantages of glass reactors are their ability to optimize and replicate chemical reactions, and provide a clear view of the reaction process. They are corrosion-resistant, work with different atmospheric pressures and vacuum, and can be used for a variety of applications such as catalytic research, process engineering, and biomass research. Glass reactors are also designed with safety in mind, allowing for safe processing of solvents and acids. Other benefits include the availability of various options such as heating/cooling systems, vacuum pumps, PH probes, and pressure gauges.

What are the advantages of using sapphire substrates?

Sapphire substrates offer unparalleled chemical, optical, and physical properties. They are highly resistant to thermal shocks, high temperatures, sand erosion, and water, making them ideal for demanding applications.

What causes an increase in pressure within a high-pressure reactor?

Increasing pressure inside a pressure reactor can be achieved through various means. One common method is by heating a sealed pressure vessel, where temperature and pressure increase proportionately, impacting reaction kinetics. Alternatively, the reaction occurring inside the vessel can induce pressure, and agitation can accelerate this process.

In situations where heating is unsuitable or insufficient pressure is generated, manual pressurization is possible with a compressed gas source, such as a compressor or a pre-compressed canister of inert gas.

Pressure reactors utilize pressure relief valves to safely regulate and maintain pressure, emphasizing their reliable and safe operation.

How does a thermal element work?

A thermal element works by converting electrical energy into heat through the process of Joule heating. When an electric current flows through the element, it encounters resistance, and this results in heating of the element. Metal and ceramic heating elements operate on the principle of electric resistance heating, generating heat by resisting the flow of electricity through the material. The coefficient of electrical resistance of the material determines its ability to generate heat proportional to the amount of current flowing through it. The generated heat radiates outwards into the heat treatment chamber, making thermal elements a highly effective method of generating heat.

What are the 3 electrodes in electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

How does borosilicate glass enhance the efficiency of laboratory processes?

Borosilicate glass enhances the efficiency of laboratory processes by providing a smooth surface that offers excellent visibility, allowing for better inspection and monitoring of reactions and experiments. Its optical properties make it a preferred material over plastics, metals, and other building materials.

How is soda-lime glass manufactured, and what are its applications?

Soda-lime glass is created by floating molten glass on molten tin, ensuring uniform thickness and exceptionally flat surfaces. It is widely favored as an insulating substrate for thin/thick film deposition in laboratory settings.

What material is glass reactor?

The glass reactor is made of borosilicate glass and has excellent physical and chemical properties. The borosilicate glass is highly resistant to thermal shock, chemical corrosion, and mechanical impacts, making it ideal for use in laboratory equipment. The glass is also transparent, allowing for easy observation of the reaction inside the vessel. The glass reactor is designed to withstand high temperatures and pressure, and it is used in various industries such as petrochemical, pharmaceutical, and dye, among others.

Why is boroaluminosilicate glass suitable for laboratory glassware and cooking utensils?

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

How does a pressure reactor work?

A pressure reactor is a laboratory device used to conduct chemical reactions at high pressure. It works by controlling the pressure within the reactor vessel, allowing researchers to increase the pressure to desired levels and monitor the reaction as it occurs. The high-pressure environment can alter the reaction rate and outcome, making pressure reactors an essential tool for understanding the underlying mechanisms of chemical reactions. Pressure reactors are designed with safety in mind, featuring high-quality pressure-resistant materials, automatic pressure control systems, and leak-detection systems. They come in various sizes and designs, making them suitable for a wide range of reactions.

What are the advantages of using thermal elements?

Thermal elements offer several advantages in temperature measurement. Firstly, they have a wide temperature range, allowing for accurate measurements across a broad spectrum, from extremely low temperatures to high temperatures. They also have high sensitivity, meaning they can detect even small temperature changes. Additionally, thermal elements have excellent stability and repeatability, providing reliable and consistent temperature readings over time. They are rugged and durable, making them suitable for use in harsh environments. Thermal elements can also be easily integrated into various systems and instruments for temperature monitoring and control.

What are the different types of electrochemical electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What makes PTFE glassware suitable for handling corrosive substances?

PTFE glassware is suitable for handling corrosive substances due to its exceptional chemical resistance, temperature stability, and non-stick properties. These features make PTFE flasks, cylinders, and bottles ideal for use in laboratories where corrosive chemicals are involved.

What makes K9 quartz glass suitable for optical applications?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, including high clarity and precise refractive index, making it ideal for various optical applications.

What are the different types of glass reactors?

Different types of glass reactors include single-layer, double-layer, and three-layer glass reactors. Other types of reactors include glass-lined reactors, hydrothermal synthesis reactors, magnetic stirring reactors, electric heating reactors, and steam reactors. Glass reactors are commonly used in high and low-temperature reactions, vacuum reactions, solvent synthesis at a constant temperature, distillation and reflux reactions, vacuum distillation reactions, extraction separation reactions, purified reactions, and concentration reactions.

What are the applications of optical quartz glass sheets?

Optical quartz glass sheets are used for precise light manipulation in various fields including telecommunications, astronomy, and optical technology due to their exceptional clarity and tailored refractive properties.

What are the different types of thermal elements?

There are several types of thermal elements, including thermocouples, resistance temperature detectors (RTDs), and thermistors. Thermocouples are made of two dissimilar metals joined together, and they generate a voltage proportional to the temperature difference between their junctions. RTDs are made of pure metals, such as platinum or copper, and their resistance changes with temperature. Thermistors are made of temperature-sensitive semiconducting materials and have a large change in resistance with temperature.

What materials are commonly used for electrochemical electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

What are the benefits of using PTFE measuring cylinders in laboratories?

PTFE cylinders are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance, and maintain a low coefficient of friction, ensuring ease of use and cleaning. They are a rugged alternative to traditional glass cylinders.

What temperature should a glass reactor be?

The temperature range of a glass reactor may vary depending on the model and its intended use. In general, glass reactors can operate at temperatures as low as -80°C and as high as 300°C. However, the optimal working temperature will depend on the specific reaction being conducted and the chemicals being used. It is important to carefully monitor and control the temperature of the glass reactor to ensure the safety and effectiveness of the reaction.

What makes K9 glass special?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, making it suitable for various optical applications.

How should thermal elements be calibrated and maintained?

Calibration and maintenance of thermal elements are crucial to ensure their accuracy and reliability. Regular calibration should be performed using certified reference thermometers or temperature standards to verify the accuracy of temperature readings. Calibration intervals may vary depending on the application and industry requirements. Proper storage and handling of the thermal elements are important to prevent damage or contamination. It is recommended to protect the elements from extreme temperatures, moisture, and corrosive substances. Regular inspection of the element's connections, insulation, and protective sheaths should be carried out, and any damage or wear should be addressed promptly. Proper cleaning of the elements, if required, should be done following manufacturer guidelines. It is important to follow the manufacturer's recommendations for maintenance and consult with experts when necessary.

What factors should be considered when selecting an electrochemical electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

Why is glass a preferred material for laboratory equipment?

Glass has a smooth surface that offers an excellent view of what is going on inside the equipment, enhancing the efficiency of inspection in each process. It is also clear and provides good optical properties, making it a preferred material for laboratory equipment.

What is a CaF2 window used for?

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable, and resistant to laser damage, making them suitable for a wide range of optical applications.

How can electrochemical electrodes be used in various applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.

What are the properties of magnesium fluoride crystal substrates?

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

What is silicon used for in the near-infrared range?

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

What are glass vibration beads used for in laboratories?

Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation, making them useful in various experimental setups.
View more faqs for this product

4.7

out of

5

Exceptional quality and durability, perfect for our bioremediation studies.

Hiroshi Tanaka

4.8

out of

5

Superb chemical stability, no contamination issues in our lab.

Elena Müller

4.9

out of

5

Highly satisfied with the thermal resistance, ideal for continuous bioprocessing.

Amina El-Sayed

4.7

out of

5

Great value for money, these beads have significantly improved our process control.

Javier Rodríguez

4.8

out of

5

Impressive compatibility with various lab equipment, minimal setup changes needed.

Svetlana Petrov

4.9

out of

5

These beads are a game-changer for anisotropic glass creation in our lab.

Lucas Ferreira

4.7

out of

5

Smooth surface and good finish, excellent for precision laboratory glassware.

Anika Johansson

4.8

out of

5

Reliable and safe, perfect for managing hazardous vapors in our fume hoods.

Rajesh Kapoor

4.9

out of

5

Outstanding performance in bioprocessing, reduced our footprint significantly.

Nina Olsen

4.7

out of

5

These beads have enhanced the productivity of our organic semiconductor research.

Carlos Silva

4.8

out of

5

Excellent support for our implantable medical device production.

Olga Ivanova

4.9

out of

5

Top-notch beads, highly recommend for any lab needing chemical and thermal stability.

Emiliano Rossi

PDF - Glass Oscillating Beads Laboratory Zeolite Transparent Glass Balls

Download

Catalog of Glass Material

Download

Catalog of Laboratory Glassware

Download

Catalog of Glass Material

Download

Catalog of Glass Reactor

Download

Catalog of Glass Substrate

Download

Catalog of High Pressure Reactor

Download

Catalog of Thermal Elements

Download

Catalog of Electrochemical Electrode

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High borosilicate glass stirring rod/flow diversion laboratory glass rod resistant to high temperature

High borosilicate glass stirring rod/flow diversion laboratory glass rod resistant to high temperature

Used in chemical experiments, a glassy thin and long rod-shaped simple stirrer, also known as a glass rod.

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

Agate Grinding Jar With Balls

Agate Grinding Jar With Balls

Grind your materials with ease using Agate Grinding Jars with Balls. Sizes from 50ml to 3000ml, perfect for planetary and vibration mills.

Float soda-lime optical glass for laboratory

Float soda-lime optical glass for laboratory

Soda-lime glass, widely favored as an insulating substrate for thin/thick film deposition, is created by floating molten glass on molten tin. This method ensures uniform thickness and exceptionally flat surfaces.

Alumina/zirconia Grinding Jar With Balls

Alumina/zirconia Grinding Jar With Balls

Grind to perfection with alumina/zirconia grinding jars and balls. Available in volume sizes from 50ml to 2500ml, compatible with various mills.

Single and double-sided coated glass sheet/K9 quartz sheet

Single and double-sided coated glass sheet/K9 quartz sheet

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties.

PTFE Beaker/PTFE Beaker lids

PTFE Beaker/PTFE Beaker lids

The PTFE beaker is a laboratory container that is resistant to acid, alkali, high and low temperatures and is suitable for temperatures ranging from -200ºC to +250ºC. This beaker has excellent chemical stability and is widely used for heat treatment samples and volume analysis.

Nature Agate Mortar With Pestle

Nature Agate Mortar With Pestle

Get high-quality grinding results with Nature Agate Mortar and Pestle. Available in various sizes with shining polished grinding surfaces.

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

Metal Alloy Grinding Jar With Balls

Metal Alloy Grinding Jar With Balls

Grind and mill with ease using metal alloy grinding jars with balls. Choose from 304/316L stainless steel or tungsten carbide and optional liner materials. Compatible with various mills and features optional functions.

Alumina granulated powder/high purity alumina powder

Alumina granulated powder/high purity alumina powder

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

PTFE flask/PTFE three-necked flask/PTFE round bottom flask

PTFE flask/PTFE three-necked flask/PTFE round bottom flask

PTFE flask, is a versatile laboratory container made from polytetrafluoroethylene (PTFE), offering exceptional chemical resistance, temperature stability, and non-stick properties. Ideal for handling corrosive substances and high-temperature applications, these flasks are essential in various laboratory procedures, including heating, mixing, and storage of chemicals.

Zirconia Ceramic Ball - Precision Machining

Zirconia Ceramic Ball - Precision Machining

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Low temperature alumina granulation powder

Low temperature alumina granulation powder

Low temperature alumina granulation powder is a kind of alumina particles produced by a special low temperature process, designed to meet the needs of temperature sensitive applications. This material has excellent low temperature performance and good processing characteristics, suitable for a variety of industries that require low temperature processing and treatment.

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

The PTFE Volumetric Flask, a robust alternative to glass and PP flasks, excels in measuring both acidic and alkaline liquids. Characterized by its chemical inertness, translucency, and wide volume options, this flask ensures a non-leachable, ultra-clean background. Its non-stick surface simplifies cleaning and maintenance, making it ideal for harsh laboratory conditions.

Button battery storage box

Button battery storage box

Button-type battery storage box, detachable, high-quality PP environmental protection material; suitable for small objects/chemicals, etc., thickened, compressive, durable, and available in a variety of styles.

Lifting/tilting Glass Reactor

Lifting/tilting Glass Reactor

Enhance your synthetic reactions, distillation, and filtration processes with our lifting/tilting glass reactor system. With a wide range of temperature adaptability, accurate stirring control, and solvent-resistant valves, our system guarantees stable and pure results. Explore the features and optional functions today!

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Phosphorus powder sintered boron nitride (BN) crucible has a smooth surface, dense, pollution-free and long service life.

Hydrothermal Synthesis Reactor

Hydrothermal Synthesis Reactor

Discover the applications of Hydrothermal Synthesis Reactor - a small, corrosion-resistant reactor for chemical labs. Achieve rapid digestion of insoluble substances in a safe and reliable way. Learn more now.

XRF Boric Acid lab Powder Pellet Pressing Mold

XRF Boric Acid lab Powder Pellet Pressing Mold

Get accurate results with our XRF Boric Acid lab Powder Pellet Pressing Mold. Perfect for preparing samples for X-ray fluorescence spectrometry. Custom sizes available.

Laboratory ITO/FTO conductive glass cleaning flower basket

Laboratory ITO/FTO conductive glass cleaning flower basket

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE centrifugal tubes are highly valued for their exceptional chemical resistance, thermal stability, and non-stick properties, making them indispensable in various high-demand sectors. These tubes are particularly useful in environments where exposure to corrosive substances, high temperatures, or stringent cleanliness requirements are prevalent.

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

Get precise XRF samples with our plastic ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for perfect molding every time.

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal Boron Nitride (HBN) Spacer - Cam Profile and Various Spacer Types

Hexagonal boron nitride (HBN) gaskets are made from hot-pressed boron nitride blanks. Mechanical properties similar to graphite, but with excellent electrical resistance.

PTFE measuring cylinder/high temperature resistant/corrosion resistant/acid and alkali resistant

PTFE measuring cylinder/high temperature resistant/corrosion resistant/acid and alkali resistant

PTFE cylinders are a rugged alternative to traditional glass cylinders. They are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance and maintain a low coefficient of friction, ensuring ease of use and cleaning.

1-5L Single Glass Reactor

1-5L Single Glass Reactor

Find your ideal glass reactor system for synthetic reactions, distillation, and filtration. Choose from 1-200L volumes, adjustable stirring and temperature control, and custom options. KinTek has you covered!

Boron Carbide (B4C) Sputtering Target / Powder / Wire / Block / Granule

Boron Carbide (B4C) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Boron Carbide (B4C) materials for your laboratory needs at affordable prices. We offer tailored materials of different purities, shapes, and sizes to suit your unique requirements, including sputtering targets, coatings, particles, and more.

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

The PTFE Reagent Bottle, also known as PTFE Chemical Bottles or Teflon Reagent Bottle, is a robust alternative to traditional glass reagent bottles. These bottles are highly resistant to both acids and alkalis, featuring a leak-proof screw cap. Ideal for laboratory use, they offer excellent chemical resistance, high temperature capabilities up to 260°C, and superior durability.

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Boron Nitride (BN) Sputtering Target / Powder / Wire / Block / Granule

Shop Boron Nitride materials for your laboratory needs at reasonable prices. We tailor materials to your requirements with varying purities, shapes, and sizes. Choose from a wide range of specifications and sizes.

10-50L Jacket Glass Reactor

10-50L Jacket Glass Reactor

Discover the Versatile 10-50L Jacket Glass Reactor for Pharmaceutical, Chemical, and Biological Industries. Accurate Stirring Speed Control, Multiple Safety Protections, and Customizable Options Available. KinTek, Your Glass Reactor Partner.

PTFE triangular bottle/Triangular bottle with lid/Conical flask

PTFE triangular bottle/Triangular bottle with lid/Conical flask

The PTFE Triangle Bottle, also known as a Teflon reagent bottle, is a robust, chemical-resistant alternative to traditional glass bottles, suitable for handling both acids and alkalis. These bottles are unbreakable, lightweight, and feature a leak-proof screw cap, making them ideal for laboratory use.