Products Lab Consumables & Materials Optical Materials Float soda-lime optical glass for laboratory
Float soda-lime optical glass for laboratory

Optical Materials

Float soda-lime optical glass for laboratory

Item Number : KTOM-FSO

Price varies based on specs and customizations


Product thickness
0.03——5.0mm
Transmittance
90%
Main ingredient
Na2O + K2O : 14 %
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Float Soda Lime  Sheet

Soda Lime Glass, also known as Float Glass contains both Sodium and Calcium, and is formed by drawing the glass over molten tin baths. As a new type of high-tech and high value-added glass, it has the advantages of high light transmittance, smooth surface, high hardness, good chemical stability, and wide application. It is widely used in the electronics industry, especially the information industry.

Detail & Parts

Soda-lime glass has high visible light transmittance
Soda-lime glass has high visible light transmittance
High cutting precision of soda lime glass
High cutting precision of soda lime glass
Soda-lime glass resists corrosion
Soda-lime glass resists corrosion
Small difference in thickness of soda lime glass
Small difference in thickness of soda lime glass
Product diversification
Product diversification

Applications of Float Thin Glass Sheet

  • Mirrors
  • microscopic slides
  • touch screens
  • photomasks
  • glass masters
  • data storage disks
  • printed circuit substrates
  • photographic plates
  • wafers and optical windows

Properties of float soda lime glass

Thermal Conductivity 0.937 W/mK
Density (at 20 °C/68 °F) 2.44 g/cm3
Hardness (Moh's Scale) 6 - 7
Bulk Modulus 4.3 x 1010 Pa
Optical Properties Refractive Index (l=435): 1.523 (l=645)=1.513
Electrical Properties Dielectric Constant @ 20°C E= 7.75
Specific Resistivity 1000 Hz 25°C - log R ohms/cm: 9.7

Provide customized services

Through the implementation of innovative and state-of-the-art melting processes, we have acquired extensive expertise in the development and manufacture of quality glass products, offering a wide range of optical glass products for a variety of commercial, industrial and scientific applications. The company provides various specifications of optical glass such as raw glass, cut parts and finished components, and cooperates closely with customers to customize products according to customer needs. With an unwavering commitment to quality, we ensure our customers receive the perfect solution tailored to their requirements.

For further quotations, please contact us.

FAQ

What are the main types of glass substrates?

The main types of glass substrates include soda-lime glass, sapphire, boroaluminosilicate glass, optical quartz glass, K9 glass, CaF2 substrate, magnesium fluoride crystal substrate, and silicon.

What are the main types of glass materials available?

The main types of glass materials include Alkali-free/Boro-aluminosilicate glass, Optical ultra-clear glass, K9 quartz glass, Soda-lime optical glass, High-temperature resistant optical quartz glass, Glass oscillating beads, High borosilicate glass stirring rods, Glassy carbon sheets, Infrared silicon lenses, Glassy carbon electrodes, Glass tissue grinders, Micro-injectors, Lab pellet presses, and PTFE measuring cylinders.

What are optical quartz plates?

Optical quartz plates are transparent, durable components made from high-purity quartz crystal. They are widely used in various industries due to their excellent thermal and chemical resistance.

What is soda-lime glass used for?

Soda-lime glass is widely used as an insulating substrate for thin and thick film deposition in various applications due to its uniform thickness and exceptionally flat surfaces.

What are the applications of borosilicate glass?

Borosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils. It is also used in optical applications due to its clarity and durability.

What are the main types of optical quartz plates?

The main types of optical quartz plates include JGS1, JGS2, and JGS3 quartz plates, high-temperature resistant optical quartz glass sheets, K9 quartz sheets, optical ultra-clear glass sheets, diamond optical windows, MgF2 magnesium fluoride crystal substrates, infrared silicon lenses, quartz electrolytic cells, barium fluoride substrates, CaF2 substrates, infrared transmission coating sapphire sheets, ITO/FTO glass storage racks, float soda-lime optical glass, borosilicate glass, glassy carbon sheets, and high-purity silicon dioxide materials.

What are the advantages of using sapphire substrates?

Sapphire substrates offer unparalleled chemical, optical, and physical properties. They are highly resistant to thermal shocks, high temperatures, sand erosion, and water, making them ideal for demanding applications.

What are the advantages of using optical glass in laboratory settings?

Optical glass is manufactured using specific chemicals that enhance properties crucial for optics applications, such as clarity, refractive index, and durability. It is widely used in telecommunications, astronomy, and other fields requiring precise light manipulation.

What are the applications of optical quartz plates?

Optical quartz plates are used in a variety of applications, including telecommunications, astronomy, laboratory settings, high-power IR laser and microwave windows, VUV and infrared spectroscopy, near-infrared range applications, electrochemical experiments, and more.

Why is boroaluminosilicate glass suitable for laboratory glassware and cooking utensils?

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

How is soda-lime glass manufactured, and what are its applications?

Soda-lime glass is created by floating molten glass on molten tin, ensuring uniform thickness and exceptionally flat surfaces. It is widely favored as an insulating substrate for thin/thick film deposition in laboratory settings.

What are the advantages of using optical quartz plates?

Optical quartz plates offer several advantages, such as excellent thermal and chemical resistance, high clarity, tailored refractive properties, resistance to laser damage, stability in various environments, and versatility in different industries.

What are the applications of optical quartz glass sheets?

Optical quartz glass sheets are used for precise light manipulation in various fields including telecommunications, astronomy, and optical technology due to their exceptional clarity and tailored refractive properties.

What makes K9 quartz glass suitable for optical applications?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, including high clarity and precise refractive index, making it ideal for various optical applications.

How are optical quartz plates manufactured?

Optical quartz plates are typically manufactured from high-purity quartz crystal. Depending on the specific type, they may undergo various processes to enhance their optical properties, such as coating or shaping to meet precise specifications.

What makes K9 glass special?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, making it suitable for various optical applications.

What are the benefits of using PTFE measuring cylinders in laboratories?

PTFE cylinders are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance, and maintain a low coefficient of friction, ensuring ease of use and cleaning. They are a rugged alternative to traditional glass cylinders.

What makes K9 quartz sheets unique?

K9 quartz sheets, also known as K9 crystal, are a type of optical borosilicate crown glass known for their exceptional optical properties. They are widely used in optical applications due to their high clarity and tailored refractive properties.

What is a CaF2 window used for?

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable, and resistant to laser damage, making them suitable for a wide range of optical applications.

Why is glass a preferred material for laboratory equipment?

Glass has a smooth surface that offers an excellent view of what is going on inside the equipment, enhancing the efficiency of inspection in each process. It is also clear and provides good optical properties, making it a preferred material for laboratory equipment.

What is the role of optical quartz plates in telecommunications?

Optical quartz plates are used in telecommunications for precise light manipulation, ensuring clear signal transmission and enhancing the performance of optical devices.

What are the properties of magnesium fluoride crystal substrates?

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

How do optical quartz plates contribute to laboratory research?

Optical quartz plates are essential in laboratory research for their durability, chemical resistance, and precise optical properties. They are used in various experiments and setups that require high-quality optical components.

What is silicon used for in the near-infrared range?

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

What are glass vibration beads used for in laboratories?

Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation, making them useful in various experimental setups.
View more faqs for this product

4.8

out of

5

Float soda-lime glass provides high light transmittance, smooth surface, and excellent chemical stability, making it a reliable choice for laboratory applications.

Noemie Dubois

4.9

out of

5

The high cutting precision of soda-lime glass ensures accurate results and minimizes errors in laboratory experiments.

Bernardo Pereira

4.7

out of

5

Soda-lime glass's resistance to corrosion makes it ideal for handling various chemicals and solvents commonly used in laboratory settings.

Amina Patel

4.6

out of

5

Float soda-lime glass's small thickness difference ensures consistent quality and performance, making it suitable for precise measurements and observations.

Matteo Rossi

4.8

out of

5

The diverse product range of float soda-lime glass caters to various laboratory needs, providing versatility and convenience for researchers.

Zoe Zhang

4.9

out of

5

Soda-lime glass's applications in mirrors, microscopic slides, and touch screens demonstrate its versatility and suitability for various laboratory and industrial purposes.

Santiago Garcia

4.7

out of

5

The thermal conductivity, density, hardness, and optical properties of float soda-lime glass make it an effective material for laboratory equipment and components.

Hannah Kim

4.6

out of

5

The dielectric constant and specific resistivity of soda-lime glass ensure its electrical stability and performance in laboratory setups.

Oliver Jensen

PDF - Float soda-lime optical glass for laboratory

Download

Catalog of Optical Materials

Download

Catalog of Glass Substrate

Download

Catalog of Glass Material

Download

Catalog of Optical Quartz Plates

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

barium fluoride (BaF2) substrate / window

barium fluoride (BaF2) substrate / window

BaF2 is the fastest scintillator, sought-after for its exceptional properties. Its windows and plates are valuable for VUV and infrared spectroscopy.

Optical water bath electrolytic cell

Optical water bath electrolytic cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Single and double-sided coated glass sheet/K9 quartz sheet

Single and double-sided coated glass sheet/K9 quartz sheet

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties.

Optical quartz plate JGS1 / JGS2 / JGS3

Optical quartz plate JGS1 / JGS2 / JGS3

The quartz plate is a transparent, durable, and versatile component widely used in various industries. Made from high-purity quartz crystal, it exhibits excellent thermal and chemical resistance.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

Optical Windows

Optical Windows

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

Thin-layer spectral electrolysis cell

Thin-layer spectral electrolysis cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Related Articles

Glassware vs. Plasticware - Which is the Better Choice for Your Needs?

Glassware vs. Plasticware - Which is the Better Choice for Your Needs?

Both glassware and plasticware have their own advantages and disadvantages, and the choice between the two will depend on the specific needs of your laboratory.

Find out more
How To Clean Laboratory Glassware - Part 1

How To Clean Laboratory Glassware - Part 1

Cleaning laboratory glassware isn't as simple as washing the dishes. Here's how to wash your glassware so that you won't ruin your chemical solution or laboratory experiment.

Find out more
Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Discover the versatility of optical quartz plates, exploring their uses in various industries, key specifications, and factors that differentiate them from glass. Gain insights into their applications in ultraviolet transmission, precision optics, and more.

Find out more
Controlling Color and Applications of Evaporated Silicon Oxide Films

Controlling Color and Applications of Evaporated Silicon Oxide Films

Exploring color variation, control methods, and practical applications of silicon oxide thin films.

Find out more
Thin Film System Design: Principles, Considerations, and Practical Applications

Thin Film System Design: Principles, Considerations, and Practical Applications

An in-depth exploration of thin film system design principles, technological considerations, and practical applications in various fields.

Find out more
Thin Film Deposition Processes in Semiconductor Manufacturing

Thin Film Deposition Processes in Semiconductor Manufacturing

An overview of thin film deposition techniques, focusing on Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) processes in semiconductor manufacturing.

Find out more
Infrared Spectroscopy Sample Preparation and Handling

Infrared Spectroscopy Sample Preparation and Handling

Detailed guide on preparing and handling solid, liquid, and gas samples for infrared spectroscopy.

Find out more
Application of Vacuum Coating on Architectural Glass

Application of Vacuum Coating on Architectural Glass

An in-depth look at the methods and benefits of vacuum coating on architectural glass, focusing on energy efficiency, aesthetics, and durability.

Find out more
Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Discusses methods to ensure film thickness tolerance in magnetron sputtering coating for optimal material performance.

Find out more