Products Lab Consumables & Materials Optical Materials 400-700nm wavelength Anti reflective / AR coating glass
400-700nm wavelength Anti reflective / AR coating glass

Optical Materials

400-700nm wavelength Anti reflective / AR coating glass

Item Number : KTOM-ARG

Price varies based on specs and customizations


lass material
Clear glass/ Ultra clear glass
Light transparent
>98% (400-700nm)
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Anti reflective / AR coating glass

An anti-reflection coating (AR coating) is a thin film or multiple layers of materials that are applied to optical surfaces, such as lenses or windows, to reduce reflection. The primary purpose of an AR coating is to minimize the amount of light that is reflected off the surface, thereby increasing the amount of light that can pass through the material.

AR coatings work by altering the refractive index of the surface they are applied to. By carefully designing and depositing these coatings, the thickness and composition of the layers can be optimized to create destructive interference for the reflected light waves. This interference effect reduces the intensity of the reflected light, resulting in a significant reduction in glare and unwanted reflections.

Detail & Parts

The difference between having and not having AR coated glass
The difference between having and not having AR coated glass
The wavelength of AR coated glass
The wavelength of AR coated glass

Applications of Anti reflective / AR coating glass

  • Eyeglasses and Sunglasses: AR coatings on prescription eyeglasses and sunglasses reduce glare, improve visual clarity, and enhance the overall optical quality of the lenses. They allow more light to pass through the lenses, reducing reflections that can interfere with vision.
  • Camera Lenses: AR coatings on camera lenses help minimize lens flare, ghosting, and unwanted reflections, resulting in clearer and sharper images. They also increase light transmission, allowing photographers to capture more detail and improve overall image quality.
  • Display Screens: AR coatings on display screens, such as computer monitors, televisions, smartphones, and tablets, reduce reflections and improve visibility by minimizing glare. This enhances the viewing experience, particularly in bright environments, and provides better image clarity and color accuracy.
  • Optical Instruments: AR coatings are used on various optical instruments like microscopes, telescopes, binoculars, and camera lens filters. They reduce reflections and increase light transmission, allowing users to observe objects with greater clarity and detail.

Properties of Anti-Reflective Coating Glasses

  • Minimize surface reflection and glare.
  • Maximize visible wavelength capacity.
  • Prevent visual distortions and ambiguous images.
  • Absorb minimal light, benefiting the eye.
  • Offer high abrasion resistance and strong coating adhesion.

Precautions

  • Using a dry cloth on a dry lens can cause scratches and damage the lens coating. Anti-reflective coatings reduce reflections that can hide lens defects, but scratches are more visible on AR-coated lenses.
  • Handle and clean lenses with AR coatings carefully to avoid scratches and maintain clarity.

Provide customized services

Through the implementation of innovative and state-of-the-art melting processes, we have acquired extensive expertise in the development and manufacture of quality glass products, offering a wide range of optical glass products for a variety of commercial, industrial and scientific applications. The company provides various specifications of optical glass such as raw glass, cut parts and finished components, and cooperates closely with customers to customize products according to customer needs. With an unwavering commitment to quality, we ensure our customers receive the perfect solution tailored to their requirements.

For further quotations, please contact us.

FAQ

What Is Physical Vapor Deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

How Thick Is A Typical AR Coating?

The overall thickness of this ideal AR coating is slightly over two QWOTs at the longest wavelength or lowest frequency in the pass band (300 cm-1).

Is AR Coating On Inside Or Outside?

A/R coatings are usually applied to both front and back of lenses. However, on sunglasses A/R coatings are only applied to the backside of the lenses to eliminate any reflection from behind or a mirror image from the eye.

How Long Does Anti-reflective Coating Last?

On average, anti-reflective lens coatings last about two years, but with proper care an AR coating should last the life of the lens.

What Is Magnetron Sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

What Are The Methods Used To Deposit Thin Films?

The two main methods used to deposit thin films are chemical vapor deposition (CVD) and physical vapor deposition (PVD). CVD involves introducing reactant gases into a chamber, where they react on the surface of the wafer to form a solid film. PVD does not involve chemical reactions; instead, vapors of constituent materials are created inside the chamber, which then condense on the wafer surface to form a solid film. Common types of PVD include evaporation deposition and sputtering deposition. The three types of evaporation deposition techniques are thermal evaporation, electron-beam evaporation, and inductive heating.

Why Magnetron Sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What Is Thin Film Deposition Equipment?

Thin film deposition equipment refers to the tools and methods used to create and deposit thin film coatings onto a substrate material. These coatings can be made of various materials and have different characteristics that can improve or alter the substrate's performance. Physical vapor deposition (PVD) is a popular technique that involves vaporizing a solid material in a vacuum, then depositing it onto a substrate. Other methods include evaporation and sputtering. Thin film deposition equipment is used in the production of opto-electronic devices, medical implants, and precision optics, among others.

What Are The Materials Used In Thin Film Deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What Is Thin-film Deposition Technology?

Thin film deposition technology is the process of applying a very thin film of material, ranging in thickness from a few nanometers to 100 micrometers, onto a substrate surface or onto previously deposited coatings. This technology is used in the production of modern electronics, including semiconductors, optical devices, solar panels, CDs, and disk drives. The two broad categories of thin film deposition are chemical deposition, where a chemical change produces a chemically deposited coating, and physical vapor deposition, where a material is released from a source and deposited on a substrate using mechanical, electromechanical, or thermodynamic processes.

What Are The Methods To Achieve Optimal Thin Film Deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses Of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What Are The Advantages Of Using Thin Film Deposition Equipment?

Thin film deposition equipment offers several advantages in various industries and research fields. It enables precise control over film properties such as thickness, composition, and structure, allowing for tailored materials with specific functionalities. Thin films can be deposited over large areas, complex shapes, and different substrate materials. The deposition process can be optimized to achieve high uniformity, adhesion, and purity of the films. Additionally, thin film deposition equipment can operate at relatively low temperatures, reducing thermal stress on the substrate and enabling deposition on temperature-sensitive materials. Thin films find applications in fields such as electronics, optics, energy, coatings, and biomedical devices, offering enhanced performance, protection, or functionality.

Factors And Parameters That Influence Deposition Of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

What Factors Should Be Considered When Selecting Thin Film Deposition Equipment?

Several factors should be considered when selecting thin film deposition equipment. The technique (PVD, CVD, ALD, MBE) should align with the desired film properties and the specific material being deposited. The size and configuration of the deposition chamber should accommodate the substrate size and shape requirements. The equipment's capabilities in terms of film thickness control, uniformity, and deposition rate should meet the application needs. Considerations should also include the availability and compatibility of precursor materials or target sources for the desired film composition. Other factors to consider are the ease of operation, maintenance requirements, vacuum system reliability, and any additional features such as in situ monitoring or control options. Consulting with experts or manufacturers can provide valuable guidance in selecting the most suitable thin film deposition equipment for a specific application.

What Safety Considerations Are Associated With Operating Thin Film Deposition Equipment?

Operating thin film deposition equipment requires certain safety considerations to ensure the well-being of operators and prevent potential hazards. Some deposition techniques involve the use of high temperatures, vacuum environments, or toxic gases. Adequate safety protocols should be in place, including proper training for operators, use of personal protective equipment (PPE), and adherence to safety guidelines provided by the equipment manufacturer and regulatory agencies. Proper ventilation systems should be installed to handle any hazardous gases or by-products generated during the deposition process. Emergency shut-off systems, alarms, and interlocks should be implemented to handle unexpected events or equipment malfunctions. Maintenance and periodic inspections should also be conducted to ensure the equipment's safety and functionality. It is crucial to have well-established safety protocols and follow recommended practices to minimize risks associated with thin film deposition equipment operation.
View more faqs for this product

4.8

out of

5

The AR coating glass is a game-changer for my lab. It has significantly reduced glare and reflections, resulting in clearer images and more accurate results.

Gerrard G.

4.7

out of

5

The quality of this AR coating glass is exceptional. It's durable and has held up well in our lab's demanding environment.

Amina K.

4.9

out of

5

The speedy delivery of the AR coating glass was a lifesaver. It arrived just in time for a crucial experiment, and the results were outstanding.

Renaud B.

4.6

out of

5

I'm thoroughly impressed with the value for money I got with this AR coating glass. It's a cost-effective solution that has greatly improved the efficiency of our optical experiments.

Isabella C.

4.8

out of

5

The technological advancement of this AR coating glass is remarkable. It has opened up new possibilities for our research and has pushed the boundaries of what we can achieve in the lab.

Federico O.

4.7

out of

5

The durability of the AR coating glass is exceptional. It has withstood rigorous use in our lab and continues to perform flawlessly, delivering consistent and reliable results.

Emma S.

4.9

out of

5

The clarity and sharpness of images obtained using this AR coating glass are truly impressive. It has revolutionized the way we conduct experiments and has led to groundbreaking discoveries.

Samuel P.

4.6

out of

5

The versatility of this AR coating glass is commendable. It has proven to be adaptable to various applications in our lab, enhancing the performance of different optical instruments.

Olivia H.

4.8

out of

5

The AR coating glass has exceeded our expectations. It has minimized reflections and improved the overall quality of our optical data, leading to more accurate and reliable results.

Alexander N.

4.7

out of

5

The customer service provided by the company was exceptional. They were responsive, knowledgeable, and went above and beyond to ensure a smooth and hassle-free experience.

Sophia G.

PDF - 400-700nm wavelength Anti reflective / AR coating glass

Download

Catalog of Optical Materials

Download

Catalog of Thin Film Deposition Materials

Download

Catalog of Thin Film Deposition Equipment

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical ultra-clear glass sheet for laboratory K9 / B270 / BK7

Optical glass, while sharing many characteristics with other types of glass, is manufactured using specific chemicals that enhance properties crucial for optics applications.

High temperature resistant optical quartz glass sheet

High temperature resistant optical quartz glass sheet

Discover the power of optical glass sheets for precise light manipulation in telecommunications, astronomy, and beyond. Unlock advancements in optical technology with exceptional clarity and tailored refractive properties.

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Infrared transmission coating sapphire sheet / sapphire substrate / sapphire window

Crafted from sapphire, the substrate boasts unparalleled chemical, optical, and physical properties. Its remarkable resistance to thermal shocks, high temperatures, sand erosion, and water sets it apart.

Optical Windows

Optical Windows

Diamond optical windows: exceptional broad band infrared transparency, excellent thermal conductivity & low scattering in infrared, for high-power IR laser & microwave windows applications.

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Infrared Silicon / High Resistance Silicon / Single Crystal Silicon Lens

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

Alkali-free / Boro-aluminosilicate glass

Alkali-free / Boro-aluminosilicate glass

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

Infrared thermal imaging / infrared temperature measurement double-sided coated germanium (Ge) lens

Infrared thermal imaging / infrared temperature measurement double-sided coated germanium (Ge) lens

Germanium lenses are durable, corrosion-resistant optical lenses suited for harsh environments and applications exposed to the elements.

CVD Diamond coating

CVD Diamond coating

CVD Diamond Coating: Superior Thermal Conductivity, Crystal Quality, and Adhesion for Cutting Tools, Friction, and Acoustic Applications

MgF2 magnesium fluoride crystal substrate / window

MgF2 magnesium fluoride crystal substrate / window

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

Single and double-sided coated glass sheet/K9 quartz sheet

Single and double-sided coated glass sheet/K9 quartz sheet

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties.

Longpass / Highpass Filters

Longpass / Highpass Filters

Longpass filters are used to transmit light longer than the cutoff wavelength and shield light shorter than the cutoff wavelength by absorption or reflection.

CaF2 substrate / window / lens

CaF2 substrate / window / lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible

Electron Beam Evaporation Coating Oxygen-Free Copper Crucible enables precise co-deposition of various materials. Its controlled temperature and water-cooled design ensure pure and efficient thin film deposition.

Optical quartz plate JGS1 / JGS2 / JGS3

Optical quartz plate JGS1 / JGS2 / JGS3

The quartz plate is a transparent, durable, and versatile component widely used in various industries. Made from high-purity quartz crystal, it exhibits excellent thermal and chemical resistance.

Electrode polishing material

Electrode polishing material

Looking for a way to polish your electrodes for electrochemical experiments? Our polishing materials are here to help! Follow our easy instructions for best results.

Shortpass / Shortpass Filters

Shortpass / Shortpass Filters

Shortpass filters are specifically designed to transmit light with wavelengths shorter than the cutoff wavelength, while blocking longer wavelengths.

PTFE conductive glass substrate cleaning rack

PTFE conductive glass substrate cleaning rack

The PTFE conductive glass substrate cleaning rack is used as the carrier of the square solar cell silicon wafer to ensure efficient and pollution-free handling during the cleaning process.

Zinc sulfide (ZnS) window

Zinc sulfide (ZnS) window

Optics Zinc Sulphide (ZnS) Windows have an excellent IR transmission range between 8-14 microns.Excellent mechanical strength and chemical inertness for harsh environments (harder than ZnSe Windows)

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide(ZnSe) window / substrate / optical lens

Zinc selenide is formed by synthesizing zinc vapor with H2Se gas, resulting in sheet-like deposits on graphite susceptors.

Related Articles

Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Delve into the world of optical quartz plates, exploring their exceptional properties, diverse applications in industries like optics, electronics, and more. Discover their advantages, including low thermal expansion, high temperature resistance, and precise optical clarity.

Find out more
Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Discover the remarkable characteristics and diverse applications of optical quartz plates, including their superior ultraviolet transmission, thermal stability, and use in lenses, lighting devices, and semiconductor manufacturing.

Find out more
Safety Equipment In A Lab - Eye Protection

Safety Equipment In A Lab - Eye Protection

Safety glasses or chemical goggles must be donned before entering any wet bench lab, including cell culture labs. This applies to lab visitors, GT maintenance and custodial workers as well as staff and students.

Find out more
Application of Vacuum Coating on Architectural Glass

Application of Vacuum Coating on Architectural Glass

An in-depth look at the methods and benefits of vacuum coating on architectural glass, focusing on energy efficiency, aesthetics, and durability.

Find out more
Thin Film System Design: Principles, Considerations, and Practical Applications

Thin Film System Design: Principles, Considerations, and Practical Applications

An in-depth exploration of thin film system design principles, technological considerations, and practical applications in various fields.

Find out more
Common Rework Causes and Solutions for Tubular PECVD Coatings

Common Rework Causes and Solutions for Tubular PECVD Coatings

This article discusses common rework causes in PECVD coating for crystalline silicon solar cells and provides feasible solutions to improve quality and reduce costs.

Find out more
Applications of PECVD Nano-Coating Technology in Electronic Devices

Applications of PECVD Nano-Coating Technology in Electronic Devices

PECVD nano-coating technology enhances durability and reliability in various electronic devices.

Find out more
Common Abnormal Causes and Solutions for PECVD Coating in Crystalline Silicon Solar Cells

Common Abnormal Causes and Solutions for PECVD Coating in Crystalline Silicon Solar Cells

Analyzes common PECVD coating issues in solar cells and provides solutions to improve quality and reduce costs.

Find out more
Chemical Vapor Deposition (CVD) Thin Film Deposition Technology

Chemical Vapor Deposition (CVD) Thin Film Deposition Technology

Overview of CVD technology, its principles, types, applications, process characteristics, and advantages.

Find out more
Controlling Color and Applications of Evaporated Silicon Oxide Films

Controlling Color and Applications of Evaporated Silicon Oxide Films

Exploring color variation, control methods, and practical applications of silicon oxide thin films.

Find out more
PECVD Nano-Coating Applications Beyond Waterproofing and Corrosion Prevention

PECVD Nano-Coating Applications Beyond Waterproofing and Corrosion Prevention

Explores diverse PECVD nano-coating applications including waterproofing, anti-corrosion, antibacterial, hydrophilic, and wear-resistant films.

Find out more
Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Discusses methods to ensure film thickness tolerance in magnetron sputtering coating for optimal material performance.

Find out more