Products Thermal Equipment

Thermal Equipment

KinTek supplies a broad range of high-temperature furnaces, including lab, pilot production, and industrial production furnaces, with a temperature range of up to 3000 ℃. One of KinTek's advantages is the ability to create custom-made furnaces tailored to specific functions, such as different heating methods and speeds, extra high and dynamic vacuums, controlled atmospheres and gas circuits, automated mechanical structures, and software and hardware development.


Thermal Equipment


REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Art of Nothing: Why Critical Engineering Demands Vacuum Brazing

The Art of Nothing: Why Critical Engineering Demands Vacuum Brazing

Discover how vacuum furnace brazing eliminates oxidation for superior joint integrity, the physics of vapor pressure, and why material selection dictates the process.

Read more
Why Your High-Temperature Furnace Fails: It’s Not About the Max Temp

Why Your High-Temperature Furnace Fails: It’s Not About the Max Temp

Struggling with inconsistent results from your vacuum furnace? Discover why chasing the highest temperature is a costly mistake and how to fix it.

Read more
The Quiet Physics of Purity: Mastering Heat in a Vacuum

The Quiet Physics of Purity: Mastering Heat in a Vacuum

Vacuum furnaces don't just heat; they fundamentally alter physics by replacing convection with radiation. Explore how removing air unlocks material perfection.

Read more
The Engineering of Nothingness: Why Absolute Purity Requires a Vacuum

The Engineering of Nothingness: Why Absolute Purity Requires a Vacuum

Discover why vacuum furnaces are indispensable for high-stakes thermal processing. We explore the balance between material integrity and oxidation control.

Read more
Why Your Furnace-Brazed Parts Fail—And Why It's Not the Furnace's Fault

Why Your Furnace-Brazed Parts Fail—And Why It's Not the Furnace's Fault

Discover the real reason your furnace brazing results are inconsistent and costly. It's not the equipment; it's a misunderstanding of physics.

Read more
The Silent Half of the Experiment: The Ritual of Cell Preservation

The Silent Half of the Experiment: The Ritual of Cell Preservation

Post-experiment care isn't just cleanup; it's calibration for the future. Learn the precise protocols for maintaining super-sealed electrolytic cells.

Read more
The Architecture of Emptiness: Why High-Stakes Engineering Demands a Vacuum

The Architecture of Emptiness: Why High-Stakes Engineering Demands a Vacuum

Vacuum furnaces are not just hotter ovens; they are tools of subtraction. Discover how removing the atmosphere unlocks material perfection in aerospace and medicine.

Read more
Your Furnace Hit the Right Temperature. So Why Are Your Parts Failing?

Your Furnace Hit the Right Temperature. So Why Are Your Parts Failing?

Your vacuum furnace reaches temperature but ruins your parts? Learn the hidden cause of failure and how choosing the right hot zone material ensures perfect results.

Read more
The Art of Nothingness: Precision and Purity in Vacuum Heat Treatment

The Art of Nothingness: Precision and Purity in Vacuum Heat Treatment

Discover the engineering logic behind vacuum furnaces. Learn how eliminating air prevents oxidation, ensures purity, and enables advanced metallurgy.

Read more
Why Your Brazed Joints Are Inconsistent—And the Fix Isn't in the Furnace

Why Your Brazed Joints Are Inconsistent—And the Fix Isn't in the Furnace

Frustrated by inconsistent brazed joints? Discover the hidden cause of failure that isn't heat or filler, and learn how to fix it for good.

Read more
Entropy and the Alumina Tube: The Art of Precision Maintenance

Entropy and the Alumina Tube: The Art of Precision Maintenance

Discover the disciplined approach to cleaning alumina furnace tubes. Learn how to prevent thermal shock, remove residue with acid, and extend equipment life.

Read more
Why Your High-Temperature Experiments Fail: It's Not the Heat, It's the Furnace

Why Your High-Temperature Experiments Fail: It's Not the Heat, It's the Furnace

Struggling with inconsistent results from ashing or material testing? Discover the hidden cause of sample contamination and how the right furnace design is key.

Read more
The Art of the Finish: Why the Most Critical Moment Happens After the Data is Collected

The Art of the Finish: Why the Most Critical Moment Happens After the Data is Collected

The experiment isn't over when the data is saved. Learn the psychological and technical art of shutting down and cleaning optical electrolytic cells.

Read more
The Thermal Divide: Navigating the Choice Between Tube and Chamber Furnaces

The Thermal Divide: Navigating the Choice Between Tube and Chamber Furnaces

A guide to the trade-offs in vacuum heating. We explore how physical scale and maximum temperature dictate the choice between tube precision and chamber capacity.

Read more
Why Your Heat Treatment Fails: Beyond the Maximum Temperature of Your Vacuum Furnace

Why Your Heat Treatment Fails: Beyond the Maximum Temperature of Your Vacuum Furnace

Discover why focusing on max temperature leads to failed heat treatments. Learn to match your vacuum furnace to your process for consistent, high-quality results.

Read more
The Engineering of Nothingness: Why Vacuum Furnaces Define Material Integrity

The Engineering of Nothingness: Why Vacuum Furnaces Define Material Integrity

Discover why the absence of air is the key to metallurgical perfection. We explore the physics, the trade-offs, and the precision of vacuum heat treatment.

Read more
It’s Not the Heat, It’s the Atmosphere: Why Your Furnace Is Ruining Your Samples

It’s Not the Heat, It’s the Atmosphere: Why Your Furnace Is Ruining Your Samples

Discover the real reason your high-temperature materials fail. It's not the heat, but the air itself. Learn how to fix it for good.

Read more
The Architecture of Isolation: Anatomy of a Tube Furnace

The Architecture of Isolation: Anatomy of a Tube Furnace

Explore the layered engineering of a tube furnace. From alumina insulation to quartz reactors, understand how this "thermal sleeve" achieves precise isolation.

Read more
The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

Stop blaming the furnace. Discover the hidden flaw in powder pressing that causes parts to crack and learn how Cold Isostatic Pressing (CIP) offers a permanent fix.

Read more
The Architecture of Emptiness: Controlling Pressure in Vacuum Furnaces

The Architecture of Emptiness: Controlling Pressure in Vacuum Furnaces

Precision in vacuum furnaces isn't about heat—it's about the absence of air. Explore how controlling pressure ranges defines material integrity.

Read more