Thematics Tube Furnace

tube furnace

A tube furnace is an electric heating device that is used in chemistry for the synthesis of various inorganic and organic compounds. It consists of a cylindrical tube surrounded by a heating mantle and is made from materials such as quartz, alumina, graphite, and metals. The tube furnace can be controlled via a control panel and can reach high temperatures. It is used for a wide range of processes including ageing, annealing, coating, drying, hardening, calcinations, degassing, sintering, soldering, tempering, and thermocouple calibration. Tube furnaces can also be categorized based on orientation and tube shape.


We have the best tube furnace solutions that will exceed your expectations regardless of your budget. Our extensive portfolio offers a variety of standard solutions suitable for various needs, and our bespoke design service can meet almost any unique customer requirement. Our tube furnaces are available in various models, including single or multi-zone, horizontal/vertical, split & rotating models, and continuous or batch rotary tube furnaces. 

Applications of Tube Furnace

  • Material synthesis and processing
  • Heat treatment and annealing of metals and alloys
  • Thermal analysis and characterization of materials
  • Powder sintering and compaction
  • Crystal growth and epitaxial film deposition
  • Catalytic reaction studies under controlled atmospheres
  • High-temperature testing and experimentation
  • Research and development in materials science and engineering
  • Production of advanced ceramics and composites
  • Production of carbon nanotubes and graphene

Advantages of KINTEK Tube Furnace

  • Mature technology with a simple furnace structure
  • Low power consumption and high thermal efficiency
  • Easy to operate and control with continuous production
  • Fast heating and good operation performance
  • No pollution to the environment
  • Can control temperature easily and remotely with fine adjustment
  • Multiple furnaces can be combined for large-scale production
  • Suitable for various applications, including physiochemical processing of loose materials, cracking of gas, and more
  • High-quality heating element with a long service life
  • Optional exhaust port and inert gas inlet
  • Programmable controllers with adjustable over-temperature protection and safety lock system for door opening and cutting heating.

Our tube furnace is the perfect fit for your laboratory equipment needs. With its extensive product line, it offers a standard solution at a reasonable price. Its unique feature is the custom design service that caters to your specific requirements. The furnace is available in different models, including single or multi-zone, horizontal/vertical, split & rotating, continuous or batch rotary tube furnaces. It is equipped with two or more heating zones and can produce temperatures up to 1800°C. Our tube furnace is ideal for applications requiring relatively small workspaces and features such as multiple zones, independently controlled.

FAQ

What Is A Tube Furnace?

Laboratory tube furnace is one classic external heating high temperature tube furnace, also named hot wall heating furnace.

According to the different working temperature, furnace tube material usually can be transparent quartz tubes, high purity alumina ceramic tubes and high strength metal alloy tubes.

To meet different thermal researching purposes, tube furnace can be designed with multi heating zones, so as to have a flexible control of temperature gradient in the tube working chamber; furnace tube can work with a controlled atmosphere working environment or a high vacuum working environment.

How Does A Tube Furnace Work?

Tube furnace heating elements are placed surrounding the cylindrical cavity, furnace can only heat the samples in the cylindrical cavity through indirect thermal radiation, since furnace tube can prevent sample material from contacting with furnace heating elements and insulation materials, so tube furnace creates a clean isolated heat chamber and reduce risks of the sample material contaminating by the furnace.

What Is The Application For Tube Furnace?

Tubular furnace is mainly used in metallurgy, glass, heat treatment, lithium anode and cathode materials, new energy, abrasives and other industries, and is a professional equipment for measuring materials under certain temperature conditions.

Tube furnace features simple structure, easy operation, easy control and continuous production.

Tube furnace is also widely applied in the CVD (chemical vapor deposition) and plasma enhanced CVD systems.

How Many Different Types Tube Furnace?

Tube furnace can work with different mechanical functions smoothly, so there are many different types tube furnace variations for different experiment purposes, typical furnace furnaces are as below:

  • Horizontal tube furnace
  • Vertical tube furnace
  • Split tube furnace
  • Rotary tube furnace
  • Tilting tube furnace
  • Sliding tube furnace
  • Fast heating and cooling tube furnace
  • Continuous feeding and discharging tube furnace

What Are The Advantages Of Using A Tube Furnace?

Tube furnaces offer several advantages for high-temperature applications. Firstly, they provide precise and uniform temperature control, allowing for accurate and repeatable heating processes. This is crucial for materials research and heat treatment applications where temperature consistency is essential. Secondly, tube furnaces have a compact design, making them suitable for use in limited laboratory or industrial spaces. They are also versatile and can accommodate a wide range of sample sizes and shapes. Additionally, tube furnaces are energy-efficient, as they typically have good insulation and can reach high temperatures quickly. Some models also offer programmable temperature profiles, allowing for automated heating and cooling cycles. Overall, tube furnaces enable efficient and controlled high-temperature processes in various scientific and industrial fields.

What Safety Precautions Should Be Taken When Using A Tube Furnace?

When using a tube furnace, it is important to follow safety precautions to prevent accidents and ensure operator and sample safety. Firstly, proper training should be provided to personnel operating the furnace to ensure they understand its operation, safety features, and emergency procedures. Secondly, appropriate personal protective equipment (PPE), such as heat-resistant gloves, goggles, and lab coats, should be worn to protect against burns and potential hazards. Thirdly, it is crucial to properly load the sample or material inside the furnace, ensuring it is securely positioned and does not obstruct airflow. Adequate ventilation should be provided to remove any potential gases or fumes generated during heating. It is also important to regularly inspect and maintain the furnace, including checking the heating elements and electrical connections, to ensure safe and reliable operation.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Comprehensive Guide to Rotary Vane Vacuum Pumps

Comprehensive Guide to Rotary Vane Vacuum Pumps

An in-depth analysis of the structure, working principle, applications, and advantages of rotary vane vacuum pumps.

Read more
Common Pumps Used in Ultrahigh Vacuum Systems

Common Pumps Used in Ultrahigh Vacuum Systems

An overview of the primary types of pumps utilized in ultrahigh vacuum systems, including mechanical, turbomolecular, sputtering ion, titanium sublimation, and cryogenic pumps.

Read more
Choosing the Right Laboratory Vacuum Pump

Choosing the Right Laboratory Vacuum Pump

Guide on selecting appropriate vacuum pumps for various laboratory applications, considering types, uses, and vacuum degree calculations.

Read more
Introduction to Common Laboratory Vacuum Pumps

Introduction to Common Laboratory Vacuum Pumps

An overview of various vacuum pumps used in laboratories, including molecular and rotary vane pumps.

Read more
Choosing the Right Heating Method in Laboratory Experiments

Choosing the Right Heating Method in Laboratory Experiments

Understanding the differences between metal bath, water bath, and thermostat heating methods for various lab experiments.

Read more
Laboratory Heating Equipment Safety

Laboratory Heating Equipment Safety

Discusses the importance of safety in using electrothermal thermostatic water baths and constant temperature oil baths in laboratories.

Read more
In-depth analysis of the key characteristics and advantages of polytetrafluoroethylene

In-depth analysis of the key characteristics and advantages of polytetrafluoroethylene

This paper will take an in-depth look at the key properties of polytetrafluoroethylene (PTFE), such as high-temperature resistance, corrosion resistance and low friction, as well as the wide range of applications and advantages in industry and everyday life.

Read more
Effective Waste Oil Recycling through Molecular Distillation

Effective Waste Oil Recycling through Molecular Distillation

Molecular distillation is a crucial technology for recycling waste oil, separating organic substances from pollutants, and reducing environmental impact.

Read more
Laboratory Jacketed Vessels

Laboratory Jacketed Vessels

Overview of jacketed vessels, their types, and applications in various industries.

Read more
Improving Efficiency in Rotary Evaporator Distillation Purification

Improving Efficiency in Rotary Evaporator Distillation Purification

Strategies to enhance distillation efficiency in rotary evaporators, focusing on cooling medium temperature, heating pot temperature, and system vacuum.

Read more
Rotary Evaporator Basics: Principles, History, Maintenance, and Selection

Rotary Evaporator Basics: Principles, History, Maintenance, and Selection

A comprehensive guide on rotary evaporators, covering principles, history, maintenance, and selection criteria.

Read more
Advantages and Applications of Rotary Evaporators

Advantages and Applications of Rotary Evaporators

Explore the benefits and diverse applications of rotary evaporators in various industries.

Read more
Rotary Evaporator Operation and Troubleshooting Guide

Rotary Evaporator Operation and Troubleshooting Guide

Detailed guide on rotary evaporator parts, applications, handling, operation, and troubleshooting.

Read more
Safety Hazards and Precautions for Laboratory Heating Equipment

Safety Hazards and Precautions for Laboratory Heating Equipment

Guidelines on common heating equipment and safety measures in lab settings.

Read more
Impact of Sintering Furnaces on Ceramic Manufacturing

Impact of Sintering Furnaces on Ceramic Manufacturing

Explores the role of sintering furnaces in ceramic production, focusing on their applications, heating methods, and effects on ceramic properties.

Read more
Temperature Control Requirements for Laboratory Small High-Temperature Resistance Furnaces

Temperature Control Requirements for Laboratory Small High-Temperature Resistance Furnaces

Exploring the precision, stability, and safety aspects of temperature control in laboratory small high-temperature resistance furnaces.

Read more
Precision Ceramics: Types, Working Principles, and Performance Characteristics of Various Sintering Furnaces

Precision Ceramics: Types, Working Principles, and Performance Characteristics of Various Sintering Furnaces

An in-depth look at different types of sintering furnaces and their principles, advantages, and disadvantages.

Read more
In-Depth Understanding of Zirconia Sintering Furnaces

In-Depth Understanding of Zirconia Sintering Furnaces

An exploration of zirconia sintering processes, furnace components, and optimal conditions for achieving high-quality dental restorations.

Read more
Advancements in Muffle Furnace Technology and Applications

Advancements in Muffle Furnace Technology and Applications

Explores the principles, types, research, and future prospects of muffle furnaces in various industries.

Read more
Calibration Methods for High-Temperature Muffle Furnaces

Calibration Methods for High-Temperature Muffle Furnaces

Explores traditional and system calibration methods for ensuring temperature accuracy in high-temperature muffle furnaces, focusing on temperature deviation and uniformity.

Read more

Downloads

Catalog of Tube Furnace

Download

Catalog of Rotary Tube Furnace

Download

Catalog of Cvd Furnace

Download

Catalog of Mpcvd Machine

Download

Catalog of Vacuum Furnace

Download

Catalog of Cvd Machine

Download

Catalog of Rotary Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Advanced Ceramics

Download

Catalog of Engineering Ceramics

Download

Catalog of Fine Ceramics

Download