Thematics Rotary Tube Furnace

rotary tube furnace

A Rotary Tube Furnace is a circular furnace that rotates during heat treatment. It is used in a wide range of industries and is designed to heat loose materials for physiochemical processing. These furnaces feature a metal drum lined with refractory and are classified depending on their method of heat exchange and energy transfer method. Rotary Tube Furnaces can be made of ceramic, quartz, or a high-temperature alloy and can be built with a wide temperature range. They are suitable for manufacturing materials such as alumina, vermiculite, iron ore pellets, and cement clinker, as well as for oxidation and calcination processes.


We have the best Rotary Tube Furnace solutions for a wide range of applications. Our furnaces are designed to withstand high temperatures and offer complete process control, resulting in high-quality products. With customized rotation speeds and gradients, fully programmable operation, and options for processing in air, oxygen, and inert atmospheres, you can trust that our Rotary Tube Furnaces will exceed your expectations. At KINTEK, we offer a bespoke design service that allows us to meet almost any customer requirement.

Applications of Rotary Tube Furnace

  • Manufacturing of materials such as alumina and iron ore pellets.
  • Calcination of materials that require continuous throughput and loose materials.
  • Oxidation of materials.
  • Powder processing to minimize material handling.
  • Drying of materials.
  • Calcination of materials while maintaining their individual grain characteristics.
  • Heat treatment of materials to improve their properties.
  • Sintering of materials to form a solid mass from a powdery substance.
  • Annealing of materials to reduce their hardness and increase their ductility.
  • Reduction of metal oxides to produce metals.

Rotary tube furnaces offer complete process control resulting in high-quality products. They can withstand high temperatures and provide efficient heat transfer over a short time. Rotary tube furnaces can be customized to suit individual requirements, such as temperature control, work-space size, residence time, tube rotation rate, tube inclination angle, temperature profile, atmosphere flow rate, powder bed depth, and feed rate.

Advantages of Rotary Tube Furnace

  • Improved gas diffusion and reduced gas consumption
  • Increased heat treatment efficiency
  • Consistent temperature profile for improved product homogeneity
  • Efficient way to transfer heat over a short time and continuously run batches of materials
  • Minimizes material handling, especially in powder processing
  • Custom designed to fit specific requirements such as temperature control, workspace size, residence time, tube rotation rate, tube inclination angle, temperature profile, atmosphere flow rate, powder bed depth, and feed rate
  • Versatile tool for a wide range of physicochemical processing applications in the laboratory
  • Allows materials to be heated and mixed simultaneously in a controlled atmosphere
  • Equipped with additional features such as feeders and inert gas packages to optimize processing conditions
  • Adjustable rotation speed, tilt, and heating zones for fine-tuning furnace performance
  • Suitable for applications in research and development, including material science, geology, gaseous reduction of ores, synthesis of catalysts and pigments, calcination of oil shale, and doping ceramics with rare earth metals
  • Provides excellent temperature uniformity for high-quality and consistent materials processing.

Our Rotary Tube Furnace is an excellent solution for manufacturing various materials and applications such as calcining and oxidation. With sustained operating temperatures up to 1700°C, it is heated with silicon carbide or molydisilicide heating elements, providing complete process control and high-quality products. Our furnace has a fully programmable operation with a fully integrated control panel, customized rotation speeds, and gradients. It can process in air, oxygen, and inert atmospheres. Additionally, we offer custom design services for specific requirements, which makes our furnace both advantageous in terms of price and customizable.

FAQ

What Is A Rotary Tube Furnace?

A rotary tube furnace is a circular furnace that rotates during heat-treatment. It is designed to heat loose materials for physiochemical processing and is used for continuous materials processing. These furnaces feature a metal drum lined with refractory, which is mounted at an angle and can burn pulverized, solid, gaseous or liquid fuel into its working section. Rotary tube furnaces have a wide range of applications, including the manufacturing of materials such as alumina, vermiculite, iron ore pellets and cement clinker, as well as for oxidation and calcination processes.

How Does A Rotary Tube Furnace Work?

A rotary tube furnace is a circular furnace that rotates during heat-treatment. It burns fuel and the heating gases created flow towards the sample. The furnace features a metal drum lined with refractory, mounted at an angle. Loose materials are heated for physiochemical processing and the heat is transferred from a heat source to a rotating tube which holds the sample. Rotary tube furnaces are designed for continuous materials processing and have multiple thermal control zones. They have a wide range of applications, including the manufacture of alumina, vermiculite, iron ore pellets, and cement clinker.

What Are The Advantages Of A Rotary Tube Furnace?

The advantages of a rotary tube furnace include improved gas diffusion, reduced gas consumption, increased heat treatment efficiency, and improved product homogeneity. These furnaces provide an efficient way to transfer heat over a short time and continuously run batches of materials. Rotary tube furnaces can be custom designed for specific requirements, including temperature control, workspace size, residence time, tube rotation rate, and atmosphere flow rate. When choosing a tube for a rotary tube furnace, key points to consider include rotational speed, amount of material, tube diameter, suspended length, and tube thickness.

What Is The Function Of Rotary Tube Furnace?

The function of a rotary tube furnace is to heat loose materials for physiochemical processing. The furnace features a rotating tube that holds the sample and applies heat in multiple thermal control zones. Heating gases created by burning fuel flow towards the sample through the furnace. Rotary tube furnaces are used for manufacturing materials such as alumina, vermiculite, iron ore pellets, and cement clinker, as well as for oxidation and calcination processes. These furnaces can be made of ceramic, quartz, or high-temperature alloy and can be built with a wide temperature range for various applications.

What Are The Advantages Of Rotary Tube Furnace?

Rotary tube furnaces offer efficient heat transfer over a short period, continuously processing batches of material while minimizing material handling. The furnace's continuous movement exposes the entire sample surface to the atmosphere, improving gas diffusion and reducing gas consumption to increase heat treatment efficiency.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Glass Ceiling: Navigating the True Thermal Limits of Quartz Tube Furnaces

The Glass Ceiling: Navigating the True Thermal Limits of Quartz Tube Furnaces

The 1200°C limit on a quartz tube is not a guarantee—it is a variable. Learn how purity, atmosphere, and time dictate the true lifespan of your furnace.

Read more
Creating Perfection in a Void: The Physics and Psychology of the Vacuum Furnace

Creating Perfection in a Void: The Physics and Psychology of the Vacuum Furnace

Discover how vacuum tube furnaces create oxygen-free environments to prevent contamination and enable high-purity materials synthesis.

Read more
The Architecture of Silence: Why Indirect Heating Defines Material Purity

The Architecture of Silence: Why Indirect Heating Defines Material Purity

Discover the engineering behind vacuum furnace heating. Learn how indirect thermal radiation and environmental isolation ensure contamination-free results.

Read more
The Architecture of Heat: Why Context Dictates Furnace Design

The Architecture of Heat: Why Context Dictates Furnace Design

Tube furnace design is rarely generic. Explore how temperature, atmosphere, and throughput dictate the engineering of thermal systems.

Read more
Why Your Graphite Components Keep Failing—And How to Stop It for Good

Why Your Graphite Components Keep Failing—And How to Stop It for Good

Graphite parts failing below their temp limit? We reveal the hidden cause (oxidation) and show you how to protect your experiments and budget.

Read more
The Alchemy of Isolation: Why Heat Alone Is Never Enough

The Alchemy of Isolation: Why Heat Alone Is Never Enough

Discover why advanced material synthesis demands more than just high temperatures. A deep dive into the tube furnace, atmospheric control, and the precision of isolation.

Read more
Beyond Heat: Mastering Material Purity in the Controlled Void of a Vacuum Furnace

Beyond Heat: Mastering Material Purity in the Controlled Void of a Vacuum Furnace

Discover how vacuum furnaces create a pristine, controlled environment, eliminating oxidation for superior material purity, strength, and perfection.

Read more
The Architecture of Isolation: Mastering the Anatomy of a Tube Furnace

The Architecture of Isolation: Mastering the Anatomy of a Tube Furnace

A tube furnace is more than a heater; it is a modular system for isolation. Explore the engineering behind quartz vs. alumina, thermal zones, and atmospheric control.

Read more
The Art of Nothing: Navigating the Invisible Divide in Heat Treatment

The Art of Nothing: Navigating the Invisible Divide in Heat Treatment

To treat metal, you must either tame the air or banish it entirely. A deep dive into the physics of Vacuum vs. Atmosphere Furnaces and the pursuit of purity.

Read more
Heating in a Void: The Physics of Perfection in Material Science

Heating in a Void: The Physics of Perfection in Material Science

Explore how vacuum furnaces use indirect radiant heating to achieve unmatched material purity and temperature uniformity for mission-critical parts.

Read more
The Architecture of Silence: Why Negative Pressure Redefines Thermal Safety

The Architecture of Silence: Why Negative Pressure Redefines Thermal Safety

Discover how vacuum furnaces leverage phase-change physics and negative pressure to deliver a heating solution that is intrinsically safe and hyper-efficient.

Read more
The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

Increasing pressure in hot press sintering speeds densification but risks hidden flaws like anisotropy. Mastering this trade-off is key to superior materials.

Read more
The Architecture of Nothingness: Why 5 Microns Defines Your Furnace

The Architecture of Nothingness: Why 5 Microns Defines Your Furnace

A vacuum furnace leak rate is more than a metric; it is a vital sign. Learn why <5 microns/hour is the boundary between precision and failure.

Read more
The Architecture of Heat: Deconstructing the Tube Furnace

The Architecture of Heat: Deconstructing the Tube Furnace

Explore the physics of resistive heating, thermal uniformity, and atmospheric control. Understand how tube furnaces turn electrical chaos into precise scientific results.

Read more
Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Discover how hot press lamination forges non-porous, chemical-resistant surfaces, making it the ideal foundation for modern laboratory furniture.

Read more
The Silent Guardian: Why Vacuum Furnace Operations Are an Art Form

The Silent Guardian: Why Vacuum Furnace Operations Are an Art Form

Vacuum furnace operators don't just watch machines; they orchestrate complex thermodynamics. Discover the human skill behind material purity.

Read more
From Dust to Density: The Microstructural Science of Hot Pressing

From Dust to Density: The Microstructural Science of Hot Pressing

Hot pressing isn't just shaping material; it's a micro-engineering process that eliminates hidden voids to create parts with near-perfect density and strength.

Read more
The Architecture of Containment: Selecting Materials for Super-Sealed Electrolytic Cells

The Architecture of Containment: Selecting Materials for Super-Sealed Electrolytic Cells

The vessel defines the experiment. Explore the engineering trade-offs between Borosilicate Glass, Quartz, and PTFE to ensure accurate electrochemical data.

Read more
The Geometry of Heat: Why Your Furnace Tube Material Dictates Your Science

The Geometry of Heat: Why Your Furnace Tube Material Dictates Your Science

The material of your furnace tube isn't just a detail; it's a boundary condition for your physics. Discover how to balance Quartz, Alumina, and Alloys.

Read more
Why Your Heat-Treated Parts Fail: The Invisible Enemy in Your Furnace

Why Your Heat-Treated Parts Fail: The Invisible Enemy in Your Furnace

Tired of inconsistent, oxidized parts from your furnace? Discover the real reason for failure isn't the heat, but the air, and how a vacuum furnace fixes it.

Read more