Thematics Vacuum Furnace

vacuum furnace

A vacuum furnace is a type of furnace that surrounds the material being processed with a vacuum. This prevents oxidation, heat loss through convection, and contamination. The furnace can heat materials like metals and ceramics to high temperatures up to 3,000 °C with select materials. The vacuum level and maximum furnace temperature depend on the melting points and vapor pressures of the heated materials. Vacuum furnaces are used for processes like annealing, brazing, sintering, and heat treatment. The process can be computer-controlled, ensuring repeatability, and the product is low in contamination and high in purity.


We have the best Vacuum Furnace solutions for your unique requirements. Our custom vacuum furnaces are engineered to meet almost any customer requirement. We offer a range of shapes and sizes, multiple hot zone options, and manual or automatic flow controls. Our extensive portfolio virtually guarantees there is an appropriate standard solution that will meet your needs. We build vacuum furnaces operating at pressures as low as 10-11 Torr (mBar) with an operating range from room temperature to a maximum temperature of 3000 °C (5432°F) for our tungsten hot zones and 2200 °C (3992°F) for our graphite hot zones in a rough vacuum level (10-2 Torr/mbar).

Applications of Vacuum Furnace

  • Annealing
  • Brazing
  • Sintering
  • Heat treatment
  • Hardening
  • Tempering
  • Aging
  • Nitriding
  • Carburizing
  • Quenching

Advantages of Vacuum Furnace

  • Allows heating of metals to high temperatures with minimal contamination problems due to the absence of oxygen.
  • Provides uniform high temperatures and precise temperature control for producing high-quality materials with consistent properties.
  • Low contamination from carbon, oxygen, and other gases due to the vacuum atmosphere.
  • Quick quenching or cooling of the product is possible to shorten process cycle times.
  • Computer-controlled to ensure repeatable performance for consistent quality output.
  • Can heat materials up to temperatures as high as 3,000 °C (5,432 °F) with select materials.
  • Commercially available vacuum pumping systems can reach vacuum levels as low as 1×10−11 torrs (1.3×10−11 mbar; 1.3×10−14 atm).
  • Vacuum pumping systems remove low temperature by-products from the process materials during heating, resulting in a higher purity end product.
  • Used for a wide range of industrial processes, such as heat treatment, sintering, brazing, and annealing.
  • Typically made of refractory materials, such as graphite or ceramic, that can withstand the extreme temperatures and vacuum environment.

 

Our Vacuum Furnace is the perfect solution for your unique projects. Our extensive product line provides a standard solution to fit your needs. However, for more unconventional applications, our custom design service comes in handy. Our custom vacuum furnaces are engineered for your specific project, no matter how unconventional it may be. These furnaces are designed for multiple processes, available in vertical or horizontal loading, and come in a range of shapes and sizes. In addition, we offer automatic flow controls and multiple hot zone options. The best part? Our Vacuum Furnace is very advantageous in terms of price and offers a complete customisation service.

FAQ

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Hidden Variable: Why Your Vacuum Furnace Results Are Inconsistent, and How to Fix Them for Good

The Hidden Variable: Why Your Vacuum Furnace Results Are Inconsistent, and How to Fix Them for Good

Stop getting failed parts from your vacuum furnace. Learn why common fixes don't work and how precise pressure control is the key to perfect results.

Read more
The Art of the Void: When Precision Matters More Than Power

The Art of the Void: When Precision Matters More Than Power

Discover why "more vacuum" isn't always better. A deep dive into furnace tiers, vapor pressure physics, and selecting the right tool for material integrity.

Read more
Why Your Aluminum Melts Are Inconsistent—And Why Your Furnace Is to Blame

Why Your Aluminum Melts Are Inconsistent—And Why Your Furnace Is to Blame

Struggling with dross and inconsistent aluminum alloys? Discover why your traditional furnace is the root cause and how induction melting solves it.

Read more
The Silent Geometry of Voltage: Respecting the Limits of Electrolysis

The Silent Geometry of Voltage: Respecting the Limits of Electrolysis

Electrolysis relies on strict electrical boundaries. Learn why exceeding rated current and voltage isn't just inefficient—it's destructive.

Read more
The Architecture of Emptiness: Diagnosing and Fixing Vacuum Furnace Leaks

The Architecture of Emptiness: Diagnosing and Fixing Vacuum Furnace Leaks

Master the art of vacuum leak detection. Learn systematic strategies for hot and cold furnaces using helium tracers, smoke tests, and oxygen analysis.

Read more
Your Tube Furnace Is Not the Problem—Your Choice of It Is

Your Tube Furnace Is Not the Problem—Your Choice of It Is

Struggling with inconsistent thermal processing? Discover why your furnace's design, not your parameters, is the root cause and how to choose the right one.

Read more
The Silent Engine: Precision, Risk, and the Art of Vacuum Heating

The Silent Engine: Precision, Risk, and the Art of Vacuum Heating

Discover the critical engineering behind vacuum furnace heating elements. Learn how voltage limits, material choice, and thermal physics define success.

Read more
When 'Perfect' Brazing Goes Wrong: The Vacuum Furnace Mistake You Can't Afford to Make

When 'Perfect' Brazing Goes Wrong: The Vacuum Furnace Mistake You Can't Afford to Make

Discover why high-tech vacuum furnaces can ruin certain brazing jobs and how choosing the right process for your materials is key to flawless results.

Read more
The Engineering of Emptiness: How Vacuum Tube Furnaces Defeat Oxidation

The Engineering of Emptiness: How Vacuum Tube Furnaces Defeat Oxidation

Explore the science behind vacuum tube furnaces. Learn how eliminating oxygen enables high-purity heat treatment and why the "hot wall" design matters.

Read more
Beyond Temperature: The Hidden Reason Your Vacuum Furnace Fails (And How to Fix It)

Beyond Temperature: The Hidden Reason Your Vacuum Furnace Fails (And How to Fix It)

Tired of inconsistent heat treatment results? Discover why focusing only on temperature is a mistake and how an integrated system approach is the key to success.

Read more
The Architecture of Transparency: Mastering Safety and Precision in Quartz Electrolysis

The Architecture of Transparency: Mastering Safety and Precision in Quartz Electrolysis

Master the art of using all-quartz electrolytic cells. From preventing micro-bubbles to managing electrical hazards, discover how discipline drives data integrity.

Read more
The Architecture of Emptiness: Why the Void is the Ultimate Material Shield

The Architecture of Emptiness: Why the Void is the Ultimate Material Shield

Discover how sealed vacuum furnaces eliminate atmospheric interference to unlock superior material properties, unmatched purity, and absolute process control.

Read more
Why Your State-of-the-Art Furnace Is Failing: The Hidden Truth About Induction Melting

Why Your State-of-the-Art Furnace Is Failing: The Hidden Truth About Induction Melting

Frustrated by inconsistent results from your induction furnace? Discover the hidden reason it fails with certain materials and how to choose the right tool.

Read more
The Engineering of Absence: Unlocking Material Purity Through Vacuum Furnaces

The Engineering of Absence: Unlocking Material Purity Through Vacuum Furnaces

Discover how vacuum furnaces prevent oxidation and ensure material integrity by heating in a near-airless environment. Explore the science of pure heat treatment.

Read more
Why Your Furnace Components Keep Failing—And the Material Science Fix

Why Your Furnace Components Keep Failing—And the Material Science Fix

Frustrated by costly furnace failures? Discover the root cause isn't bad luck, but a material science issue that the right ceramic tube can permanently solve.

Read more
The Thermodynamics of Silence: How Inert Gas Breaks the Vacuum Barrier

The Thermodynamics of Silence: How Inert Gas Breaks the Vacuum Barrier

In high-temperature vacuum furnaces, cooling is an aggressive, engineered process. Learn how inert gas acts as a thermal conveyor belt to control metallurgy.

Read more
The Ceramic Paradox: Why the Best Way to Clean an Alumina Tube is Not to Clean It

The Ceramic Paradox: Why the Best Way to Clean an Alumina Tube is Not to Clean It

Deep cleaning is often a symptom of process failure. Discover the engineering protocols to maintain alumina tubes, prevent thermal shock, and ensure longevity.

Read more
Your Tungsten Furnace Is Failing. The Culprit Isn't What You Think.

Your Tungsten Furnace Is Failing. The Culprit Isn't What You Think.

Frustrated with contaminated samples from your tungsten furnace? Discover the hidden cause—and how mastering the atmosphere unlocks reliable results.

Read more
The Silent Vessel: Why the Material of Your Furnace Tube Defines Your Science

The Silent Vessel: Why the Material of Your Furnace Tube Defines Your Science

The tube furnace tube is not just a container; it is a boundary condition. Learn how choosing between ceramic, quartz, and metal defines your experimental limits.

Read more
Why Your Furnace Experiments Fail: The Hidden Mismatch in Your Lab

Why Your Furnace Experiments Fail: The Hidden Mismatch in Your Lab

Frustrated by inconsistent furnace results? Discover the hidden reason your thermal experiments fail and how the right tool can ensure repeatable success.

Read more