Products Thermal Equipment Graphitization furnace Continuous graphitization furnace
Continuous graphitization furnace

Graphitization furnace

Continuous graphitization furnace

Item Number : GF-07

Price varies based on specs and customizations


Rated temperature (C)
2500
Effective heating area (mm)
100X200X500 / 100X400X1000 / 100X600x2000
Power (KW)
80 / 150 / 300
Frequency (HZ)
2500/1000
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

A continuous graphitization furnace is a high-temperature furnace used to treat carbon cloth, carbon fiber, silicon carbide ceramic fiber, and other materials at temperatures ranging from 2100 to 2800°C. It employs medium frequency induction heating for rapid temperature rise and high efficiency, and its unique design ensures temperature uniformity within the furnace. The furnace features double-layer alumina brick insulation to prevent short circuits and provides excellent heat insulation and fire resistance, resulting in low heat loss and stable operation. It incorporates a constant tension control system for carbon fiber and an automatic rewinding and unwinding system for carbon felt. All operating parameters, actions, and alarms are controlled by a PLC with a human-computer interaction interface, digital flow monitoring system, and water flow monitoring and protection for each channel of the power cabinet. Multiple operating processes can be conveniently stored, recalled, and interactively operated, while real-time display and recording capabilities enhance user experience.

Continuous graphitization furnace

Applications

Continuous graphitization furnaces are widely used in the following applications:

  • Continuous graphitization treatment of carbon cloth
  • Continuous graphitization treatment of carbon fiber
  • Continuous graphitization treatment of silicon carbide ceramic fiber

Features

Continuous graphitization furnace is a kind of high-temperature furnace used in the continuous graphitization treatment of carbon cloth, carbon fiber, silicon carbide ceramic fiber and other materials at high temperatures of 2100-2800°C. It has the following advantages:

  • High temperature uniformity: The unique furnace design greatly improves the temperature uniformity of the furnace body, ensuring consistent and uniform treatment of materials.

  • Low energy consumption: The double-layer alumina brick insulation material effectively reduces heat loss, resulting in lower energy consumption and improved efficiency.

  • Automatic control: The PLC-controlled system with human-computer interaction interface allows for precise control over operating parameters, actions, and alarms, simplifying operation and ensuring accurate treatment.

  • Real-time monitoring: The digital flow monitoring system and water flow monitoring and protection for each channel of the power cabinet provide real-time monitoring of equipment performance, ensuring safety and reliability.

  • Versatile applications: The continuous graphitization furnace is suitable for a variety of high temperature treatment and graphitization treatment applications, making it a versatile and cost-effective solution.

Principle

The continuous graphitization furnace employs medium frequency induction heating for rapid temperature elevation and efficiency. Its well-designed furnace structure optimizes temperature uniformity. The double-layer alumina brick insulation effectively prevents short circuits and ensures heat insulation and fire resistance, minimizing heat loss and enhancing equipment stability.

Advantages

  • High temperature uniformity: Medium frequency induction heating provides rapid temperature rise and high efficiency. The unique furnace design significantly improves temperature consistency within the furnace body.
  • Low energy consumption and stability: Double-layer alumina brick insulation prevents short circuits, ensuring excellent heat insulation and fire resistance, minimizing heat loss, and enhancing equipment stability.
  • Precise tension control: Constant tension control system for carbon fiber and automatic rewinding and unwinding system for carbon felt.
  • Advanced monitoring and control: PLC controls all operating parameters, actions, and alarms. A human-computer interaction interface, digital flow monitoring system, and water flow monitoring and protection for each channel of the power cabinet provide real-time monitoring, interactive operation, and convenient storage and retrieval of operating processes.
  • Suitable for various applications: The high temperature, high efficiency, and uniform heating characteristics make the furnace ideal for a wide range of high temperature treatment and graphitization applications.

Technical parameters

  • Commonly used temperatures: 2000C-2800℃
  • Working atmosphere in the furnace: argon, nitrogen and other inert gases
  • Temperature uniformity: ≤±25℃
  • Temperature measurement: far-infrared optical temperature measurement (1000-3200℃);
  • Temperature measurement accuracy: 0.2~0.75%
  • Temperature control: program control and manual control; temperature control accuracy: ±1℃
  • Furnace structure: horizontal single-zone heating, both inlet and outlet are connected by flanges
  • Heating element: graphite crucible
Product model specifications GF-07-10×20×50 GF-07-10×40×100 G7-06-10×60×200
Rated temperature(C) 2500 2500 2500
Effective heating area (mm) 100×200×500 100×400×1000 100×600×2000
Power(KW) 80 150 300
Frequency(HZ) 2500 2500 1000
heating method Induction heating
Import and export cooling Cooling zones of 500-1000mm are set up at the entrance and exit respectively.
Import and export gas protection Set up 500-1000mm gas sealing areas at the inlet and outlet respectively
Temperature measurement method 1000-3200C infrared optical temperature measurement
Insulation part Hard carbon felt+soft carbon felt
gas flow 2-6m/h
Oxygen content detection Using Shaanxi Fein oxygen content analyzer, real-time detection of oxygen content and dew point real-time analyzer

FAQ

What materials can be treated in the continuous graphitization furnace?

Materials that can be treated include carbon cloth, carbon fiber, and silicon carbide ceramic fiber.

What applications are the products of the continuous graphitization furnace used in?

Products of the continuous graphitization furnace are used in applications such as electrodes, crucibles, and structural components.
View more faqs for this product

4.8

out of

5

The continuous graphitization furnace has been a great addition to our lab. It's easy to use and has helped us improve the quality of our products.

Eduardo Leal

4.9

out of

5

We've been using the continuous graphitization furnace for over a year now and it's been a great investment. It's helped us increase our production efficiency and reduce our costs.

Maria Garcia

4.7

out of

5

The continuous graphitization furnace is a great value for money. It's well-built and has a lot of features that make it easy to use.

Pedro Lima

4.8

out of

5

The continuous graphitization furnace is a very durable product. We've been using it for several years now and it's still going strong.

Sofia Costa

4.9

out of

5

The continuous graphitization furnace is a technologically advanced product. It has a lot of features that make it easy to use and control.

Manuel Pereira

4.7

out of

5

The continuous graphitization furnace is a great product for small labs. It's compact and easy to use.

Ana Silva

4.8

out of

5

The continuous graphitization furnace is a great product for large labs. It's fast and efficient.

Joao Oliveira

4.9

out of

5

The continuous graphitization furnace is a great product for research labs. It's accurate and reliable.

Maria Santos

4.7

out of

5

The continuous graphitization furnace is a great product for industrial labs. It's durable and has a long lifespan.

Pedro Marques

4.8

out of

5

The continuous graphitization furnace is a great product for educational labs. It's safe and easy to use.

Sofia Oliveira

4.9

out of

5

The continuous graphitization furnace is a great product for any lab. It's versatile and can be used for a variety of applications.

Manuel Santos

PDF of GF-07

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Related Articles

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Discover how vacuum graphite furnaces revolutionize high-temperature material treatments with unmatched precision and efficiency. Explore customized solutions for various industries, advanced automation, and sustainable energy practices.

Find out more
Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Delve into the world of vacuum graphite furnaces, exploring their exceptional performance, diverse applications, and crucial considerations. Our expert insights empower you to make informed decisions for your laboratory's high-temperature material treatment needs.

Find out more
What is activated carbon regeneration Rotary Furnace

What is activated carbon regeneration Rotary Furnace

Electric activated carbon regeneration furnace is one typical electric external heating rotary furnace

Find out more
Understanding the Design and Functionality of Industrial Furnaces

Understanding the Design and Functionality of Industrial Furnaces

Industrial furnaces are heating devices used in various industrial processes, including soldering, heat treatment of steels and alloys, and ceramics sintering.

Find out more
All About  ACTIVATED CARBON THERMAL REGENERATION

All About ACTIVATED CARBON THERMAL REGENERATION

Introduction, method and selection of activated carbon regeneration

Find out more
Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

the ashing process involves heating a sample in the presence of oxygen to burn off organic compounds and leave behind the inorganic, non-combustible ash.

Find out more
How to Maintain Your Dental Ceramic Furnace

How to Maintain Your Dental Ceramic Furnace

The dental furnaces are expensive and require regular maintenance to ensure they function properly and produce accurate results.

Find out more
6 Ways To activated carbon regeneration

6 Ways To activated carbon regeneration

Activated Carbon Regeneration: Thermal Regeneration Method, Biological Regeneration Method, Wet Oxidation Regeneration Method, Solvent Regeneration Method, Electrochemical Regeneration Method, Catalytic Wet Oxidation Method

Find out more
How Biomass Pyrolysis Machines Work A Comprehensive Overview

How Biomass Pyrolysis Machines Work A Comprehensive Overview

Biomass pyrolysis machines are designed to convert biomass materials into useful products such as biochar, bio-oil, and syngas.

Find out more
Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing(HIP ) is a technology used to densify materials at high temperatures and pressures. The process involves placing a material in a sealed container, which is then pressurized with an inert gas and heated to a high temperature.

Find out more
The Importance of Activated Carbon Regeneration in Water Treatment

The Importance of Activated Carbon Regeneration in Water Treatment

In water treatment, activated carbon is often used as a means of removing unwanted contaminants, such as chlorine, chloramines, and organic matter, from drinking water and wastewater.

Find out more