Products Thermal Equipment Vacuum Furnace 9MPa air pressure sintering furnace
9MPa air pressure sintering furnace

Vacuum Furnace

9MPa air pressure sintering furnace

Item Number : KT-APS

Price varies based on specs and customizations


Specification
Please refer to the icon below for details
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics. Key features of this furnace include:

  • High Pressure Capability: Operates at pressures up to 9MPa, enabling effective densification of ceramic materials.
  • Temperature Control: Precise temperature regulation up to 2200℃, ensuring accurate and uniform heating.
  • Vacuum System: Achieves a cold vacuum degree of 10-3Pa, creating an oxygen-free environment for sintering.
  • Atmosphere Control: Allows for the introduction of specific gases to control the sintering atmosphere.
  • Versatile Structures: Available in vertical, horizontal, and bottom-up configurations, accommodating different sample sizes and shapes.

Details & Part

9.8MPa air pressure sintering furnace details

Applications

  • Vacuum sintering and pressure sintering of SiC and Si3N4 ceramic parts
  • Aerospace and automotive industries
  • Medical and dental applications
  • Research and development laboratories

Features

  • Enhanced Temperature Uniformity: Equipped with multiple independent heaters and optimized power distribution, this furnace ensures consistent temperature throughout the high-pressure heating zone, promoting uniform sintering.
  • Comprehensive Safety Protection: Advanced safety measures are incorporated, including automatic locking systems for door operations, temperature control, and pressure regulation. Emergency and power failure scenarios are addressed with pressure release valves, ensuring safe operation.
  • Cooling System Monitoring: The cooling water system is meticulously monitored for pressure, temperature, and flow. Flow monitoring for each cooling water circuit safeguards against equipment damage due to water shortage failures.

Principle

The air pressure sintering furnace utilizes a combination of high temperature and pressure to densify ceramic materials. The furnace consists of a heating chamber, pressure vessel, gas supply system, and temperature control system. During operation, the furnace is heated to a predetermined temperature, and a high-pressure gas (typically nitrogen or argon) is introduced into the pressure vessel. The high pressure compresses the ceramic powder, promoting grain growth and densification. This process results in improved mechanical properties, such as increased strength and hardness, and reduced porosity. The furnace can be used for a variety of ceramic materials, including silicon carbide (SiC), silicon nitride (Si3N4), and zirconia (ZrO2).

Advantages

  • High temperature uniformity: The air pressure sintering furnace adopts a unique heating element design, which ensures high temperature uniformity in the furnace chamber. This is important for achieving consistent sintering results.
  • Fast heating and cooling rates: The air pressure sintering furnace has a high heating rate and cooling rate, which can significantly reduce the sintering time. This can save energy and improve productivity.
  • Precise temperature control: Theair pressure sintering furnace has a precise temperature control system, which can accurately control the temperature in the furnace chamber. This is important for achieving the desired sintering results.
  • Wide range of applications: The air pressure sintering furnace can be used for a wide range of materials, including metals, ceramics, and composites. This makes it a versatile tool for various applications.
  • Easy to operate: The air pressure sintering furnace is easy to operate, with a user-friendly interface. This makes it accessible to users of all skill levels.

Technical specification

Air pressure sintering furnace Vertical structure
The working area Φ100×90mm, Φ200×220mm, etc.  
The bottom-lift type Φ300×400mm, etc.
The horizontal type 250×250×400mm, 375×375×475mm, etc.
Cold vacuum degree 10-3Pa, 10Pa, etc
Maximum pressure 1.2MPa, 2MPa, 6MPa, 9MPa
Temperature 2000℃-2200℃

FAQ

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Is Dental Furnaces?

A dental furnace, also known as a dental oven, is a piece of equipment used in the production of ceramic dental restorations such as crowns, bridges, inlays, and onlays. The furnace can reach high temperatures and pressures to process ceramic material into a hardened, final state. There are different types of dental furnaces, including ceramic combination furnaces, sintering furnaces, and glazing furnaces. Modern dental furnaces are microprocessor controlled, providing the benefit of programmability and a memory system that can remember up to 200 different programs, all of which can be executed precisely by the user.

What Are The Benefits Of A Air Pressure Sintering Furnace?

-High sintering pressure for improved product qualityUniform temperature distribution for consistent results-Fast heating and cooling rates for increased productivity- PLC control for easy operation- Compact size for space savings

What Are The Applications Of A Air Pressure Sintering Furnace?

-Sintering of ceramic materials- Sintering of metal powders- Sintering of composite materials- Brazing and soldering- Heat treatment

What Are The Factors To Consider When Choosing A Air Pressure Sintering Furnace?

- The size of the furnace chamber- The temperature range required- The pressure range required- The type of materials to be sintered- The budget

What Is The Purpose Of A Vacuum Hot Press Furnace?

The purpose of a vacuum hot press furnace is to combine vacuum or atmosphere, hot pressing, and high-temperature sintering to form new materials. It can be used in the vacuum sintering of transparent ceramics, industrial ceramics, and metals, as well as the high-temperature sintering of ceramic materials such as silicon carbide and silicon nitride. Additionally, it can be used for the heat treatment of powders and compacts at a temperature lower than the melting point of the main components, which improves their strength through metallurgical combination between particles. The finished materials have improved mechanical, electronic, and thermal properties.

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Is Cold Isostatic Pressing (CIP)?

Cold Isostatic Pressing (CIP) is a process used to compact and mold powders and other materials into a desired shape by applying hydrostatic pressure at room temperature. The process is performed using a flexible mold, typically made of rubber or plastic, that is filled with a liquid pressure medium such as water, oil, or a specialized fluid.

What Are The Different Types Of Dental Furnaces?

The different types of dental furnaces include ceramic furnaces, ceramic combination furnaces, sintering furnaces, and glazing furnaces. Ceramic furnaces process conventional ceramics, ceramic combination furnaces add the ability to operate under the pressure necessary to work with pressable ceramics, sintering furnaces are capable of reaching extreme temperatures required to process zirconia, and glazing furnaces are used for setting certain stains and glazes. When selecting a dental furnace, it is important to choose one that is capable of processing the materials used in the practice or lab, is easy to clean, and is properly maintained.

What Types Of Materials Can Be Processed In A Rotary Furnace?

Rotary furnaces can process a wide range of materials, including ores, minerals, metals, chemicals, and waste materials. They are commonly used for processes such as calcination, drying, roasting, and thermal decomposition. For example, rotary furnaces are utilized in the cement industry for clinker production, in the metallurgical industry for smelting and refining operations, and in the chemical industry for the production of catalysts or chemical reactions requiring heat treatment. The versatility of rotary furnaces allows them to handle different material forms, such as powders, granules, and bulk solids, making them suitable for various applications across multiple industries.

What Are The Advantages Of A Vacuum Hot Press Furnace?

Advantages of a vacuum hot press furnace include hot pressing sintering of metal and ceramic powders, preparation of ceramic/metal composites and intermetallic compounds, research and development of diffusion welding process, and densification hot press sintering of oxygen/nitrogen/boron/carbon compounds and their mixtures. The high temperature and pressure under vacuum or atmosphere help to bond raw materials solid particles together, decrease voids and grain boundaries, and improve the mechanical, electronic, and thermal properties of finished materials.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What Is The Temperature Of A Dental Furnace?

The temperature of a dental furnace typically ranges between 600°C and 1600°C. The firing result obtained is influenced by the accuracy of the actual temperature. Different dental furnaces can have identical digital external displays, yet different results regarding the degree of firing can be identified when processing the same ceramics under otherwise similar conditions. The International Standard levels the currently existing differences between the final calibration of the dental furnaces based on the factory of origin through a final adjustment of the temperature control in the firing chamber by means of a thermocouple at e.g. 800°C.

What Are The Rotary Furnace Types?

The rotary furnace types include rotary and tilting furnaces which have the ability to rotate and tilt, allowing for uniformity in drying and coating applications. KINTEK furnaces increase efficiency by offering multi-zone heating options, utilizing alumina fiber for refractory linings, and using temperature controllers. These furnaces are suitable for continuous processing and batch operations. Additionally, they can be opened up to use different tubes or reactors. The galvanized coating covered epoxy painted structure provides a longer lifetime and aesthetics. Overall, the rotary and tilting furnaces are popular for materials production, drying, aging, and oxidation processes.

How Does A Vacuum Hot Press Furnace Work?

A vacuum hot press furnace is a piece of equipment that combines vacuum, hot pressing, and high-temperature sintering. It works by heating and pressurizing materials under vacuum or atmosphere to create a compact polycrystalline sintered body with improved mechanical, electronic, and thermal properties. The furnace is composed of several systems including furnace body, heating and heat preservation, temperature measurement system, vacuum system, air charging system, water cooling system, control system, and pressure system. Heating elements can be graphite heater, molybdenum heater, or induction heating, and one-way or two-way pressurization can be used for hydraulic pressurization.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

What Are The Advantages Of Cold Isostatic Pressing?

  • High green strength: Machining of the compacted material in its green state becomes more feasible.
  • Materials that are hard to press: Isostatic pressing can be performed on powders without the need for water, lubricants, or binders, making it applicable to a wider range of materials.
  • Predictable shrinkage during sintering is achieved due to the high compaction and uniform density.
  • Time and cost savings in post-processing are possible due to the ability to create large, complex, and near-net shapes.
  • Large aspect ratio parts with uniform density can be produced, resulting in improved quality.
  • Green strength enables efficient in-process handling and treatment, reducing production costs.

What Is A Cold Isostatic Press?

A cold isostatic press (CIP) is a machine used to compact and mold powders and other materials into a desired shape.

The process works by filling a flexible mold, usually made of rubber or plastic, with a liquid pressure medium like water, oil, or a specialized fluid. This mold is then placed in a closed container, and equal pressure is applied to each surface to achieve a high-pressure environment.

The pressure results in an increase in the product's density and allows it to take on the desired shape.

Cold isostatic pressing is performed at room temperature, in contrast to hot isostatic pressing which is carried out at higher temperatures.

What Is The Use Of Porcelain Furnace?

A porcelain furnace is used in dentistry to create dental porcelain, which is an unglazed ceramic material used for dental restorations such as crowns and veneers. The furnace heats the ceramic material until it is soft enough to shape, and then it is cooled and polished to create the desired tooth pattern. There are two main types of dental porcelain furnace systems: direct-fired or cold-press fired, and hot-pressed or heat-fused fired. Direct-fired technology uses an external source to directly fire the ceramic material, making it more cost-effective than indirect-fired technologies.

What Are The Advantages Of Rotor Furnace?

Rotary tube furnaces offer several advantages over static processes. The continuous movement of the sample ensures that the entire surface area is exposed to the atmosphere during processing which improves gas diffusion, reduces gas consumption and increases heat treatment efficiency. Additionally, the material is continuously passed through a hot furnace that is maintaining a consistent temperature profile, improving product homogeneity. Rotary furnaces also offer significant advantages of throughput and energy efficiency over other forms of continuous, high temperature equipment, making them the latest technology for high-temperature processing of powdered materials.

What Are The Common Applications Of Vacuum Hot Press Furnaces?

Vacuum hot press furnaces have various applications in industries such as aerospace, automotive, electronics, and materials research. They are used for the production of advanced ceramics, such as ceramic matrix composites and sintered carbides, which are used in high-temperature applications. These furnaces are also utilized for the fabrication of metallic alloys, superalloys, and intermetallic compounds with tailored properties. Vacuum hot press furnaces play a crucial role in the production of diamond tools and cutting inserts, as well as in the development of advanced electronic materials and components. Additionally, these furnaces are employed in research laboratories for the synthesis and processing of novel materials with unique properties.

Application Field Of Cold Isostatic Press?

Cold Isostatic Pressing is widely used for various applications, including the consolidation of ceramic powders, compression of graphite, refractory materials, and electrical insulators, as well as the production of fine ceramics for dental and medical applications.

This technology is also making inroads into new fields such as pressing sputtering targets, coating valve parts in engines to reduce wear on cylinder heads, telecommunications, electronics, aerospace, and automotive industries.

What Is The Efficiency Of A Rotary Furnace?

Rotary tube furnaces are highly efficient in transferring heat over a short period of time while continuously running batches of materials. They also minimize material handling, making them ideal for powder processing. KINTEK offers custom-designed rotary tube furnaces that can be built to specific requirements for maximum temperature control, workspace size, residence time, tube rotation rate, tube inclination angle, temperature profile, atmosphere flow rate, powder bed depth, and feed rate. When choosing a tube for the furnace, key considerations include rotational speed, amount of material, tube diameter, suspended length, and tube thickness. The choice of tube material should also be based on potential applications.

What Factors Should Be Considered When Selecting A Vacuum Hot Press Furnace?

When selecting a vacuum hot press furnace, several factors need to be considered. Firstly, the size and capacity of the furnace should align with the intended application and production requirements. The furnace should accommodate the size and number of samples or components to be processed. The heating and pressure capabilities of the furnace should also be evaluated to ensure they meet the desired temperature and pressure conditions. It is important to consider the level of automation and control systems available, as well as the compatibility with specific materials and processes. Additionally, the reliability, service support, and overall cost of ownership should be assessed. Consulting with manufacturers and experts in the field can help in selecting the most suitable vacuum hot press furnace for specific processing needs.

What Are The Wearing Parts Of Cold Isostatic Pressing Equipment?

The wearing parts of cold isostatic equipment are mainly various seals, such as various types of seal rings, valve cores and valve seats.

Can A Rotary Furnace Be Used For Continuous Production?

Yes, rotary furnaces can be used for continuous production depending on the specific application and process requirements. Continuous operation is achieved by feeding materials into the furnace at a controlled rate while maintaining a steady rotation speed. This allows for a continuous flow of processed materials out of the furnace. Rotary furnaces are often utilized in industries requiring continuous thermal treatment, such as cement production or metallurgical processes. However, it is important to ensure proper design, sizing, and integration of auxiliary equipment, such as feed systems and discharge mechanisms, to enable continuous operation effectively. Additionally, proper monitoring and control systems should be in place to maintain consistent process parameters and product quality throughout the continuous production cycle.

Do You Provide Matching Cold Isostatic Press Molds?

We offer a variety of standard mold shapes for customers to experiment or validate their process. Custom mold design services are also available upon request.

How Can The Performance Of A Rotary Furnace Be Optimized?

The performance of a rotary furnace can be optimized through various means. Proper selection and control of process parameters, such as temperature, rotation speed, and residence time, are critical for achieving the desired results. Optimization can be achieved by adjusting these parameters based on the specific materials and process requirements. Regular maintenance, including cleaning, lubrication, and inspection of the furnace components, is essential to ensure optimal performance and prevent unexpected failures. Implementing advanced control systems and automation can enhance process efficiency, accuracy, and repeatability. Additionally, monitoring and analyzing process data, such as temperature profiles and energy consumption, can help identify opportunities for improvement and optimize energy efficiency. Collaboration with furnace manufacturers or process experts can provide valuable insights and recommendations for optimizing the performance of a rotary furnace.
View more faqs for this product

4.8

out of

5

The 9.8MPa air pressure sintering furnace from KINTEK SOLUTION is a game-changer for our laboratory. It delivers exceptional sintering results with remarkable speed and efficiency.

Dr. Emma Watson

4.9

out of

5

I'm thoroughly impressed with the value for money offered by this pressure sintering furnace. It provides outstanding performance at a competitive price, making it an excellent investment for our research facility.

Ms. Aaliyah Williams

4.7

out of

5

The quality and durability of this furnace are top-notch. It has consistently exceeded our expectations, delivering flawless sintering results for our demanding applications.

Dr. Ethan James

4.8

out of

5

KINTEK SOLUTION's pressure sintering furnace is a testament to their technological advancement. It incorporates cutting-edge features that enable us to achieve unprecedented levels of material densification.

Mr. Oliver Chen

4.9

out of

5

This furnace has revolutionized our workflow. Its user-friendly interface and automated controls have significantly reduced the time and effort required for our sintering processes.

Dr. Isabella Garcia

4.7

out of

5

The pressure sintering furnace from KINTEK SOLUTION has exceeded all our expectations. Its precise temperature control and uniform heating ensure consistent and reliable results every time.

Mr. Liam Brown

4.8

out of

5

We've been using this pressure sintering furnace for several months now, and it has proven to be an indispensable tool in our laboratory. Its high-pressure capability and versatile configurations allow us to tackle a wide range of research projects.

Dr. Sofia Patel

4.9

out of

5

The technical specifications of this furnace are truly impressive. It delivers exceptional performance and meets the highest industry standards, making it an ideal choice for our demanding applications.

Mr. Alexander Kim

4.7

out of

5

KINTEK SOLUTION has once again delivered an innovative solution with this pressure sintering furnace. It's a game-changer for our research, enabling us to explore new materials and applications.

Dr. Emily Jones

4.8

out of

5

The speed and efficiency of this furnace are remarkable. It has significantly reduced our turnaround time for sintering processes, allowing us to meet project deadlines with ease.

Mr. David Smith

4.9

out of

5

I highly recommend this pressure sintering furnace to any laboratory looking for a reliable and high-performing solution. It's a valuable asset to our research team.

Dr. Maria Garcia

4.7

out of

5

The user-friendly interface and comprehensive safety features of this furnace make it a joy to operate. It's a testament to KINTEK SOLUTION's commitment to customer satisfaction.

Mr. Benjamin Cohen

4.8

out of

5

The versatility of this pressure sintering furnace is truly impressive. It accommodates a wide range of materials and sample sizes, making it an indispensable tool for our research.

Dr. Isabella Garcia

4.9

out of

5

KINTEK SOLUTION's pressure sintering furnace is a valuable investment for any laboratory. It's a powerful and reliable tool that has transformed our research capabilities.

Mr. Ethan James

4.7

out of

5

The exceptional quality and durability of this pressure sintering furnace make it a worthwhile investment. It's a long-lasting solution that will support our research for years to come.

Dr. Aaliyah Williams

PDF - 9MPa air pressure sintering furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Hot Press Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Cold Isostatic Press

Download

Catalog of Dental Furnace

Download

Catalog of Rotary Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Spark plasma sintering furnace SPS furnace

Spark plasma sintering furnace SPS furnace

Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Vacuum dental porcelain sintering furnace

Vacuum dental porcelain sintering furnace

Get precise and reliable results with KinTek's Vacuum Porcelain Furnace. Suitable for all porcelain powders, it features hyperbolic ceramic furnace function, voice prompt, and automatic temperature calibration.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Chairside dental sintering furnace with transformer

Chairside dental sintering furnace with transformer

Experience top-notch sintering with Chairside Sintering Furnace with Transformer. Easy to operate, noise-free pallet, and automatic temperature calibration. Order now!

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Bottom lifting furnace

Bottom lifting furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Customer made versatile CVD tube furnace CVD machine

Customer made versatile CVD tube furnace CVD machine

Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!

Related Articles

Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Dive into the world of Spark Plasma Sintering (SPS) furnaces, their innovative technology, and applications in material science. Learn how SPS furnaces revolutionize the sintering process with high-speed, efficiency, and precision.

Find out more
The Ultimate Guide to Vacuum Pressure Sintering Furnace: Benefits, Applications, and Working Principle

The Ultimate Guide to Vacuum Pressure Sintering Furnace: Benefits, Applications, and Working Principle

Discover the benefits, applications, and working principle of vacuum pressure sintering furnace. Learn how vacuum sintering produces clean, bright parts with incredible design flexibility and quick turnaround, and its applications in teaching, scientific research, and production. Explore the precise setting and monitoring of process parameters, and the advantages of sintering under vacuum and pressure. Find out how vacuum sintering furnace is perfect for higher temperature sintering applications and for sintering extremely reactive materials.

Find out more
Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Dive into the comprehensive guide on Spark Plasma Sintering Furnace (SPS), covering its technology, applications in materials science, and significant advantages over traditional sintering methods.

Find out more
Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Explore the advanced features and applications of Spark Plasma Sintering Furnaces (SPS) in material science. Learn how SPS technology offers rapid, efficient, and versatile sintering for various materials.

Find out more
Comprehensive Guide to Vacuum Hot Press Furnace Application

Comprehensive Guide to Vacuum Hot Press Furnace Application

The Vacuum Hot Press Furnace is a versatile tool especially suited for sintering experiments involving non-metallic materials, carbon composites, ceramic materials and metal powder materials.

Find out more
The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

Zirconia sintering furnaces are designed to give dental professionals the ability to create dental restorations with the highest level of precision and accuracy.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

They are essential in preventing oxidation, reducing the risk of contamination, and improving the properties of the materials being treated.

Find out more
Vacuum Hot Press Furnace: A Comprehensive Guide

Vacuum Hot Press Furnace: A Comprehensive Guide

Gain in-depth knowledge of Vacuum Hot Press Furnaces, their components, benefits, and applications in various industries. Explore how these furnaces revolutionize material processing and achieve exceptional results.

Find out more
Dental Sintering Furnaces The Impact on Restoration Quality and Durability

Dental Sintering Furnaces The Impact on Restoration Quality and Durability

Dental sintering furnaces play a crucial role in the manufacturing process of dental crowns and other restorations.

Find out more
Molybdenum Vacuum Furnace: High-Temperature Sintering and Advanced Applications

Molybdenum Vacuum Furnace: High-Temperature Sintering and Advanced Applications

Explore the advanced features and applications of molybdenum vacuum furnaces in high-temperature sintering and material treatment. Learn about their construction, control systems, and maintenance tips.

Find out more