Products Thermal Equipment Vacuum Furnace Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure
Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

Vacuum Furnace

Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

Item Number : KT-APS

Price varies based on specs and customizations


Specification
Please refer to the icon below for details
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics. Key features of this furnace include:

  • High Pressure Capability: Operates at pressures up to 9MPa, enabling effective densification of ceramic materials.
  • Temperature Control: Precise temperature regulation up to 2200℃, ensuring accurate and uniform heating.
  • Vacuum System: Achieves a cold vacuum degree of 10-3Pa, creating an oxygen-free environment for sintering.
  • Atmosphere Control: Allows for the introduction of specific gases to control the sintering atmosphere.
  • Versatile Structures: Available in vertical, horizontal, and bottom-up configurations, accommodating different sample sizes and shapes.

Details & Part

9.8MPa air pressure sintering furnace details

Applications

  • Vacuum sintering and pressure sintering of SiC and Si3N4 ceramic parts
  • Aerospace and automotive industries
  • Medical and dental applications
  • Research and development laboratories

Features

  • Enhanced Temperature Uniformity: Equipped with multiple independent heaters and optimized power distribution, this furnace ensures consistent temperature throughout the high-pressure heating zone, promoting uniform sintering.
  • Comprehensive Safety Protection: Advanced safety measures are incorporated, including automatic locking systems for door operations, temperature control, and pressure regulation. Emergency and power failure scenarios are addressed with pressure release valves, ensuring safe operation.
  • Cooling System Monitoring: The cooling water system is meticulously monitored for pressure, temperature, and flow. Flow monitoring for each cooling water circuit safeguards against equipment damage due to water shortage failures.

Principle

The air pressure sintering furnace utilizes a combination of high temperature and pressure to densify ceramic materials. The furnace consists of a heating chamber, pressure vessel, gas supply system, and temperature control system. During operation, the furnace is heated to a predetermined temperature, and a high-pressure gas (typically nitrogen or argon) is introduced into the pressure vessel. The high pressure compresses the ceramic powder, promoting grain growth and densification. This process results in improved mechanical properties, such as increased strength and hardness, and reduced porosity. The furnace can be used for a variety of ceramic materials, including silicon carbide (SiC), silicon nitride (Si3N4), and zirconia (ZrO2).

Advantages

  • High temperature uniformity: The air pressure sintering furnace adopts a unique heating element design, which ensures high temperature uniformity in the furnace chamber. This is important for achieving consistent sintering results.
  • Fast heating and cooling rates: The air pressure sintering furnace has a high heating rate and cooling rate, which can significantly reduce the sintering time. This can save energy and improve productivity.
  • Precise temperature control: Theair pressure sintering furnace has a precise temperature control system, which can accurately control the temperature in the furnace chamber. This is important for achieving the desired sintering results.
  • Wide range of applications: The air pressure sintering furnace can be used for a wide range of materials, including metals, ceramics, and composites. This makes it a versatile tool for various applications.
  • Easy to operate: The air pressure sintering furnace is easy to operate, with a user-friendly interface. This makes it accessible to users of all skill levels.

Technical specification

Air pressure sintering furnace Vertical structure
The working area Φ100×90mm, Φ200×220mm, etc.  
The bottom-lift type Φ300×400mm, etc.
The horizontal type 250×250×400mm, 375×375×475mm, etc.
Cold vacuum degree 10-3Pa, 10Pa, etc
Maximum pressure 1.2MPa, 2MPa, 6MPa, 9MPa
Temperature 2000℃-2200℃

FAQ

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are The Benefits Of A Air Pressure Sintering Furnace?

-High sintering pressure for improved product qualityUniform temperature distribution for consistent results-Fast heating and cooling rates for increased productivity- PLC control for easy operation- Compact size for space savings

What Are The Applications Of A Air Pressure Sintering Furnace?

-Sintering of ceramic materials- Sintering of metal powders- Sintering of composite materials- Brazing and soldering- Heat treatment

What Are The Factors To Consider When Choosing A Air Pressure Sintering Furnace?

- The size of the furnace chamber- The temperature range required- The pressure range required- The type of materials to be sintered- The budget

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.
View more faqs for this product

4.8

out of

5

The 9.8MPa air pressure sintering furnace from KINTEK SOLUTION is a game-changer for our laboratory. It delivers exceptional sintering results with remarkable speed and efficiency.

Dr. Emma Watson

4.9

out of

5

I'm thoroughly impressed with the value for money offered by this pressure sintering furnace. It provides outstanding performance at a competitive price, making it an excellent investment for our research facility.

Ms. Aaliyah Williams

4.7

out of

5

The quality and durability of this furnace are top-notch. It has consistently exceeded our expectations, delivering flawless sintering results for our demanding applications.

Dr. Ethan James

4.8

out of

5

KINTEK SOLUTION's pressure sintering furnace is a testament to their technological advancement. It incorporates cutting-edge features that enable us to achieve unprecedented levels of material densification.

Mr. Oliver Chen

4.9

out of

5

This furnace has revolutionized our workflow. Its user-friendly interface and automated controls have significantly reduced the time and effort required for our sintering processes.

Dr. Isabella Garcia

4.7

out of

5

The pressure sintering furnace from KINTEK SOLUTION has exceeded all our expectations. Its precise temperature control and uniform heating ensure consistent and reliable results every time.

Mr. Liam Brown

4.8

out of

5

We've been using this pressure sintering furnace for several months now, and it has proven to be an indispensable tool in our laboratory. Its high-pressure capability and versatile configurations allow us to tackle a wide range of research projects.

Dr. Sofia Patel

4.9

out of

5

The technical specifications of this furnace are truly impressive. It delivers exceptional performance and meets the highest industry standards, making it an ideal choice for our demanding applications.

Mr. Alexander Kim

4.7

out of

5

KINTEK SOLUTION has once again delivered an innovative solution with this pressure sintering furnace. It's a game-changer for our research, enabling us to explore new materials and applications.

Dr. Emily Jones

4.8

out of

5

The speed and efficiency of this furnace are remarkable. It has significantly reduced our turnaround time for sintering processes, allowing us to meet project deadlines with ease.

Mr. David Smith

4.9

out of

5

I highly recommend this pressure sintering furnace to any laboratory looking for a reliable and high-performing solution. It's a valuable asset to our research team.

Dr. Maria Garcia

4.7

out of

5

The user-friendly interface and comprehensive safety features of this furnace make it a joy to operate. It's a testament to KINTEK SOLUTION's commitment to customer satisfaction.

Mr. Benjamin Cohen

4.8

out of

5

The versatility of this pressure sintering furnace is truly impressive. It accommodates a wide range of materials and sample sizes, making it an indispensable tool for our research.

Dr. Isabella Garcia

4.9

out of

5

KINTEK SOLUTION's pressure sintering furnace is a valuable investment for any laboratory. It's a powerful and reliable tool that has transformed our research capabilities.

Mr. Ethan James

4.7

out of

5

The exceptional quality and durability of this pressure sintering furnace make it a worthwhile investment. It's a long-lasting solution that will support our research for years to come.

Dr. Aaliyah Williams

PDF - Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Advanced Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

600T Vacuum Induction Hot Press Furnace for Heat Treat and Sintering

600T Vacuum Induction Hot Press Furnace for Heat Treat and Sintering

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Vacuum Heat Treat and Molybdenum Wire Sintering Furnace for Vacuum Sintering

Vacuum Heat Treat and Molybdenum Wire Sintering Furnace for Vacuum Sintering

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

Small Vacuum Heat Treat and Tungsten Wire Sintering Furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

2200 ℃ Tungsten Vacuum Heat Treat and Sintering Furnace

2200 ℃ Tungsten Vacuum Heat Treat and Sintering Furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Vacuum Heat Treat Sintering Brazing Furnace

Vacuum Heat Treat Sintering Brazing Furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Vacuum Heat Treat Furnace and Levitation Induction Melting Furnace

Vacuum Heat Treat Furnace and Levitation Induction Melting Furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Dental Porcelain Zirconia Sintering Ceramic Vacuum Press Furnace

Dental Porcelain Zirconia Sintering Ceramic Vacuum Press Furnace

Get precise dental results with Dental Vacuum Press Furnace. Automatic temperature calibration, low noise tray, and touch screen operation. Order now!

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Vacuum Hot Press Furnace Machine for Lamination and Heating

Vacuum Hot Press Furnace Machine for Lamination and Heating

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Vertical Laboratory Quartz Tube Furnace Tubular Furnace

Vertical Laboratory Quartz Tube Furnace Tubular Furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

Mesh belt controlled atmosphere furnace

Mesh belt controlled atmosphere furnace

Discover our KT-MB mesh belt sintering furnace - perfect for high-temperature sintering of electronic components & glass insulators. Available for open air or controlled atmosphere environments.

Vacuum Induction Melting Furnace Arc Melting Furnace

Vacuum Induction Melting Furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum Arc Induction Melting Furnace

Vacuum Arc Induction Melting Furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Vacuum Dental Porcelain Sintering Furnace

Vacuum Dental Porcelain Sintering Furnace

Get precise and reliable results with KinTek's Vacuum Porcelain Furnace. Suitable for all porcelain powders, it features hyperbolic ceramic furnace function, voice prompt, and automatic temperature calibration.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Laboratory Vacuum Tilt Rotary Tube Furnace Rotating Tube Furnace

Laboratory Vacuum Tilt Rotary Tube Furnace Rotating Tube Furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

Graphite Vacuum Continuous Graphitization Furnace

Graphite Vacuum Continuous Graphitization Furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Related Articles

Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Dive into the world of Spark Plasma Sintering (SPS) furnaces, their innovative technology, and applications in material science. Learn how SPS furnaces revolutionize the sintering process with high-speed, efficiency, and precision.

Find out more
The Ultimate Guide to Vacuum Pressure Sintering Furnace: Benefits, Applications, and Working Principle

The Ultimate Guide to Vacuum Pressure Sintering Furnace: Benefits, Applications, and Working Principle

Discover the benefits, applications, and working principle of vacuum pressure sintering furnace. Learn how vacuum sintering produces clean, bright parts with incredible design flexibility and quick turnaround, and its applications in teaching, scientific research, and production. Explore the precise setting and monitoring of process parameters, and the advantages of sintering under vacuum and pressure. Find out how vacuum sintering furnace is perfect for higher temperature sintering applications and for sintering extremely reactive materials.

Find out more
Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Dive into the comprehensive guide on Spark Plasma Sintering Furnace (SPS), covering its technology, applications in materials science, and significant advantages over traditional sintering methods.

Find out more
Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Explore the advanced features and applications of Spark Plasma Sintering Furnaces (SPS) in material science. Learn how SPS technology offers rapid, efficient, and versatile sintering for various materials.

Find out more
Comprehensive Guide to Vacuum Hot Press Furnace Application

Comprehensive Guide to Vacuum Hot Press Furnace Application

The Vacuum Hot Press Furnace is a versatile tool especially suited for sintering experiments involving non-metallic materials, carbon composites, ceramic materials and metal powder materials.

Find out more
The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

Zirconia sintering furnaces are designed to give dental professionals the ability to create dental restorations with the highest level of precision and accuracy.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

The Benefits of Controlled Atmosphere Furnaces for Sintering and Annealing Processes

They are essential in preventing oxidation, reducing the risk of contamination, and improving the properties of the materials being treated.

Find out more
Vacuum Hot Press Furnace: A Comprehensive Guide

Vacuum Hot Press Furnace: A Comprehensive Guide

Gain in-depth knowledge of Vacuum Hot Press Furnaces, their components, benefits, and applications in various industries. Explore how these furnaces revolutionize material processing and achieve exceptional results.

Find out more
Dental Sintering Furnaces The Impact on Restoration Quality and Durability

Dental Sintering Furnaces The Impact on Restoration Quality and Durability

Dental sintering furnaces play a crucial role in the manufacturing process of dental crowns and other restorations.

Find out more
Molybdenum Vacuum Furnace: High-Temperature Sintering and Advanced Applications

Molybdenum Vacuum Furnace: High-Temperature Sintering and Advanced Applications

Explore the advanced features and applications of molybdenum vacuum furnaces in high-temperature sintering and material treatment. Learn about their construction, control systems, and maintenance tips.

Find out more