Products Thermal Equipment Vacuum Furnace 2200 ℃ Tungsten vacuum furnace
2200 ℃ Tungsten vacuum furnace

Vacuum Furnace

2200 ℃ Tungsten vacuum furnace

Item Number : KT-VT

Price varies based on specs and customizations


Max. temperature
2200 ℃
Constant work temperature
2100 ℃
Heating rate
0-10℃/min
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The Tungsten Vacuum Furnace is a high-temperature furnace designed for a wide range of applications in materials science and engineering. It features a maximum temperature of 2200 ℃, a limit vacuum degree of 10-5 Pa in cold state, and 3 × 10-3 Pa in hot state at 2200 ℃. The furnace is equipped with a mature and advanced peripheral and vacuum system design, optimizing the configuration of all-metal hot areas. It offers precise temperature control, high vacuum levels, and a user-friendly interface. The 2200 ℃ Tungsten Vacuum Furnace is an ideal tool for researchers and engineers working with high-temperature materials, such as tungsten, graphene, and silicon carbide.

Applications

Tungsten vacuum furnaces are widely used in various industries due to their ability to provide high temperatures and vacuum conditions. Some of the main application areas include:

  • Hard alloy sintering
  • Ceramic materials processing
  • Carbon fiber graphitization
  • Carbon and carbon composite manufacturing
  • Silicon carbide product fabrication
  • Photoelectric coating materials production
  • Refractory metals (tungsten, molybdenum, tungsten-copper alloy) and other alloy materials sintering
  • Vacuum unit design and manufacturing
  • Electrical component manufacturing
  • Heating room material design and manufacturing

Structure introduction

2200 ℃ Tungsten vacuum furnace details

  • The vertical furnace body is adopted, which is divided into furnace cover, furnace body, furnace bottom, heating element, metal reflective screen, vacuum system and electric control system.
  • The appearance of the furnace body is beautiful, and the high-temperature furnace is designed by referring to foreign advanced design concepts and combining with the company's innovation. The heating element is heated by three-phase tungsten mesh.
  • The new structure has a long service life, small deformation of the heating element, and is particularly energy-saving.
  • The vacuum system is an oil diffusion pump + mechanical pump, such as molecular pump + direct-coupled mechanical pump, the ultimate vacuum can reach 8*10-5Pa
  • The equipment is of periodic operation type, all stainless steel, matt sandblasting on the outer surface, mirror surface on the inner wall, sintering and degassing of main ceramics (such as sintering of transparent alumina, magnesia, etc.), tungsten electrodes, etc. under high vacuum. It is suitable for vacuum sintering of tungsten and molybdenum products.

Principle

The 2200 ℃ Tungsten Vacuum Furnace uses tungsten as the hot zone construction material due to its exceptional properties, including high melting point, low vapor pressure, high hot strength, low thermal expansion, high thermal conductivity, high Young's modulus, high corrosion resistance, and good electrical conductivity. These properties ensure the furnace's durability and performance even at extremely high temperatures. The vacuum environment created within the furnace allows for precise temperature control and prevents contamination of the materials being processed. The furnace's design and construction enable it to achieve temperatures of up to 2200 ℃, making it suitable for various applications in materials research and industrial processes.

Advantages

  •  
  • High temperature resistance: Tungsten has a melting point of 3420ºC (6187ºF), making it ideal for use in high-temperature applications.
  • Low vapor pressure: Tungsten has a low vapor pressure, which means that it will not evaporate at high temperatures.
  • High hot strength: Tungsten has a high hot strength, which means that it can withstand high loads at high temperatures.
  • Low thermal expansion: Tungsten has a low thermal expansion, which means that it will not expand or contract significantly with changes in temperature.
  • High thermal conductivity: Tungsten has a high thermal conductivity, which means that it can conduct heat quickly and efficiently.
  • High Young's modulus: Tungsten has a high Young's modulus, which means that it is stiff and resistant to deformation.
  • High corrosion resistance: Tungsten has a high corrosion resistance against acids and molten metals, making it ideal for use in corrosive environments.
  • Recrystallization temperature: Tungsten has a recrystallization temperature between 1100º – 1400ºC (2012º – 2550ºF), which means that it can be annealed to improve its mechanical properties.
  • Good electrical conductivity: Tungsten has a good electrical conductivity, making it suitable for use in electrical applications.
  • High modulus of elasticity: Tungsten has a high modulus of elasticity, which means that it is resistant to bending and deformation.

Safety Advantage

  • Kindle Tech vacuum furnace owns over current protection, over temperature alarming function, furnace will turn off the power automatically
  • Furnace build in thermal couple detecting function, furnace will stop heating and alarm will be on once broken or failure detected
  • Power failure restarting function,furnace will resume the furnace heating program when power is incoming after failure

Technical specifications

Furnace model KT-VT
Max. temperature 2200 ℃
Constant work temperature 2100 ℃
Chamber insulation material  Tungsten heat shied
Heating element  Tungsten coil/mesh
Heating rate 0-10℃/min
Temperature sensor

T/R thermocouple and infrared thermometer

Temperature controller Touch screen PID controller with PLC
Temperature control accuracy ±1℃
Electric power supply AC110-440V,50/60HZ
Standard Chamber Sizes
Model Chamber size Temperature uniformity Rated power
KT-VT1010 ф100x 100mm ±3℃ 21Kw
KT-VT2030 Ф200x 300mm 68Kw
KT-VT3050 Ф300x 500mm 120Kw
KT-VT4060 Ф400x 600mm 160Kw
Customer design sizes and volume is accepted

Optional Setup

  • Independent furnace temperature monitoring and recording
  • RS 485 communication port for PC remote control and data exporting
  • Optional pneumatic vacuum valve linkage with temperature controller
  • Cold water circulation cooling machine for furnace shell jacket cooling system

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What is a vacuum furnace used for?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What is the process of a vacuum furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What gas is used in a vacuum furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What is the heating element used in a vacuum furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.
View more faqs for this product

4.8

out of

5

I have been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I have been very impressed with its performance. It heats up quickly and evenly, and the vacuum is very strong. I've been able to use it to sinter a variety of materials, including ceramics, metals, and alloys.

Nadezhda Mikhaylovna

4.9

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Sreelakshmi Pandurangan

4.7

out of

5

I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I've been very impressed with the quality of its construction. It's very sturdy and well-made, and it's clear that a lot of thought went into its design. I've had no problems with it so far, and I'm confident that it will last for many years to come.

Marcus Antonio

5.0

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Rukmini Devi

4.8

out of

5

I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I've been very impressed with its performance. It heats up quickly and evenly, and the vacuum is very strong. I've been able to use it to sinter a variety of materials, including ceramics, metals, and alloys.

Mehmet Yilmaz

4.9

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Anupama Sharma

4.7

out of

5

I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I've been very impressed with the quality of its construction. It's very sturdy and well-made, and it's clear that a lot of thought went into its design. I've had no problems with it so far, and I'm confident that it will last for many years to come.

Mikhail Ivanov

5.0

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Nobuko Kimura

4.8

out of

5

I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I've been very impressed with its performance. It heats up quickly and evenly, and the vacuum is very strong. I've been able to use it to sinter a variety of materials, including ceramics, metals, and alloys.

Pyotr Nikolaevich

4.9

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Maria Rodriguez

4.7

out of

5

I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for a few months now, and I've been very impressed with the quality of its construction. It's very sturdy and well-made, and it's clear that a lot of thought went into its design. I've had no problems with it so far, and I'm confident that it will last for many years to come.

Juan Carlos

5.0

out of

5

I'm a laboratory manager, and I've been using KINTEK's 2200 ℃ Tungsten vacuum furnace for over a year now. I've been very happy with its performance. It's very easy to use, and it produces high-quality results. I would definitely recommend it to other lab managers.

Takashi Yamamoto

PDF of KT-VT

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum Lamination Press

Vacuum Lamination Press

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

9.8MPa air pressure sintering furnace

9.8MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.