Products Thermal Equipment Vacuum Furnace Small vacuum tungsten wire sintering furnace
Small vacuum tungsten wire sintering furnace

Vacuum Furnace

Small vacuum tungsten wire sintering furnace

Item Number : KT-VTW

Price varies based on specs and customizations


ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The Small Vacuum Tungsten Wire Sintering Furnace is a compact, experimental vacuum furnace designed for universities and research institutes. The furnace features a CNC-welded shell and vacuum pipeline, ensuring leak-free operation. Its quick-connect electrical connections facilitate easy relocation and debugging, while the standard-made electric control cabinet provides safe and convenient operation. The furnace's precision-polished inner surfaces and helium mass spectrometer vacuum leak detector ensure high vacuum integrity. With its vertical structure, integrated cabinet, and moving wheels, the furnace occupies minimal space and is easy to move. The electrically lifted furnace bottom enhances reliability and smooth operation.

Details & Part

Small vacuum tungsten wire sintering furnace details

Applications

  • Hard alloy sintering: This furnace is ideal for sintering hard alloys, enhancing their strength and durability.
  • Ceramic materials processing: It is used in the sintering of ceramic materials, ensuring their structural integrity and electrical properties.
  • Carbon fiber graphitization: The furnace facilitates the graphitization of carbon fibers, improving their conductivity and thermal stability.
  • Carbon and carbon composite sintering: It is employed in the sintering of carbon and carbon composites, resulting in enhanced mechanical properties.
  • Silicon carbide products sintering: This furnace is valuable for sintering silicon carbide products, known for their high hardness and wear resistance.
  • Photoelectric coating materials processing: It is used in the processing of photoelectric coating materials, optimizing their optical and electrical performance.
  • Refractory metals (tungsten, molybdenum, tungsten-copper alloy) and other alloy materials sintering: The furnace is suitable for sintering refractory metals and other alloy materials in a vacuum or atmosphere at high temperatures.

Features

  • Compact design: The furnace's small footprint makes it ideal for use in space-constrained laboratories.
  • Easy to use: The furnace features a user-friendly interface and intuitive controls, making it easy to operate even for novice users.
  • Versatile: The furnace can be used for a variety of applications, including sintering, annealing, and brazing.
  • High-performance: The furnace's high-temperature capabilities and precise temperature control ensure consistent and reliable results.
  • Durable construction: The furnace's durable construction ensures long-lasting performance, even in demanding laboratory environments.
  • Safe operation: The furnace's safety features, including over-temperature protection and automatic shut-off, ensure safe operation.

Principle

The small vacuum tungsten wire sintering furnace is a resistance sintering furnace that utilizes tungsten wire as the heating element. The furnace body is made of high-temperature resistant materials and has a vacuum-tight structure. The working principle is to place the material to be sintered in the furnace chamber, evacuate the air inside the chamber to create a vacuum environment, and then pass a current through the tungsten wire to generate heat. The high temperature generated by the tungsten wire causes the material to undergo a series of physical and chemical changes, such as diffusion, thermal cracking, and chemical reactions, which promote the reorganization and recrystallization of the material at the microscopic level. This process results in the formation of a dense structure and excellent performance while preventing oxidation and pollution of the material.

Advantages

  • High vacuum degree: The vacuum pressure can reach 1.3*10^-1 Pascal, which is equivalent to 99.99987% argon purity, effectively reducing the contamination of harmful substances in the atmosphere.
  • Versatile: Suitable for fast and high-end sintering of various materials such as metals, ceramics, nanomaterials, non-crystalline materials, composite materials, and functionally graded materials.
  • Easy operation: User-friendly design with fully automatic control for vacuum pumping, pressure increasing, and sintering. Interlocking function and alarms ensure safety.
  • Compact and mobile: Vertical structure with integrated control cabinet and furnace body, equipped with moving wheels for easy movement and space-saving.
  • Reliable performance: High-quality electrical components from Omron or Schneider ensure stable control, and a classified sound and light alarm function simplifies troubleshooting.
  • Precision construction: Precision-polished inner surfaces of the furnace shell and cover with a smooth finish better than Δ6. Helium mass spectrometer vacuum leak detector testing guarantees accurate pressure rise rate data.
  • Energy-efficient: Electrically lifted furnace bottom for smoother operation and high reliability, reducing water consumption.

FAQ

What is dental furnaces?

A dental furnace, also known as a dental oven, is a piece of equipment used in the production of ceramic dental restorations such as crowns, bridges, inlays, and onlays. The furnace can reach high temperatures and pressures to process ceramic material into a hardened, final state. There are different types of dental furnaces, including ceramic combination furnaces, sintering furnaces, and glazing furnaces. Modern dental furnaces are microprocessor controlled, providing the benefit of programmability and a memory system that can remember up to 200 different programs, all of which can be executed precisely by the user.

What is a vacuum furnace used for?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What is a lab press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What are the advantages of the small vacuum tungsten wire sintering furnace?

What are the different types of dental furnaces?

The different types of dental furnaces include ceramic furnaces, ceramic combination furnaces, sintering furnaces, and glazing furnaces. Ceramic furnaces process conventional ceramics, ceramic combination furnaces add the ability to operate under the pressure necessary to work with pressable ceramics, sintering furnaces are capable of reaching extreme temperatures required to process zirconia, and glazing furnaces are used for setting certain stains and glazes. When selecting a dental furnace, it is important to choose one that is capable of processing the materials used in the practice or lab, is easy to clean, and is properly maintained.

What is the process of a vacuum furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What are the applications of pellet presses?

Pellet presses have a wide range of applications across various industries. They are commonly used in the pharmaceutical industry to produce uniform and compacted pellets for drug formulations. In the food industry, pellet presses are used to create animal feed pellets, as well as pellets for snacks and breakfast cereals. Pellet presses are also used in the chemical industry for catalysts, fertilizers, and chemical additives. Additionally, they find application in the biomass industry for the production of wood pellets for fuel, as well as in the metallurgical industry for the production of metal pellets for further processing.

What is the purpose of a hydraulic press in lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What is the temperature of a dental furnace?

The temperature of a dental furnace typically ranges between 600°C and 1600°C. The firing result obtained is influenced by the accuracy of the actual temperature. Different dental furnaces can have identical digital external displays, yet different results regarding the degree of firing can be identified when processing the same ceramics under otherwise similar conditions. The International Standard levels the currently existing differences between the final calibration of the dental furnaces based on the factory of origin through a final adjustment of the temperature control in the firing chamber by means of a thermocouple at e.g. 800°C.

What gas is used in a vacuum furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

How does a pellet press work?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What are different type of lab presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

What is the use of porcelain furnace?

A porcelain furnace is used in dentistry to create dental porcelain, which is an unglazed ceramic material used for dental restorations such as crowns and veneers. The furnace heats the ceramic material until it is soft enough to shape, and then it is cooled and polished to create the desired tooth pattern. There are two main types of dental porcelain furnace systems: direct-fired or cold-press fired, and hot-pressed or heat-fused fired. Direct-fired technology uses an external source to directly fire the ceramic material, making it more cost-effective than indirect-fired technologies.

What is the heating element used in a vacuum furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

What are the benefits of using a pellet press?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What factors should be considered when selecting a pellet press?

Several factors should be considered when selecting a pellet press. These include the desired pellet size and shape, the material properties, the required production capacity, and the available space and resources. The type and condition of the material being processed, such as its moisture content, particle size, and flowability, can also influence the selection of the pellet press. Additionally, factors such as the power requirements, ease of operation and maintenance, and the availability of spare parts and technical support should be considered. It is important to choose a pellet press that aligns with the specific requirements and objectives of the application to ensure optimal performance and cost-effectiveness.
View more faqs for this product

4.8

out of

5

I was impressed by the quick delivery of my furnace. It arrived within a week of ordering, which was much faster than I expected.

Gabriel Garza

4.7

out of

5

The value for money is exceptional. The furnace is well-made and durable, and it comes with a variety of features that make it a great value for the price.

Maria Rodriguez

4.9

out of

5

The quality of the furnace is excellent. It is made of high-quality materials and is built to last. I have been using it for several months now, and I have not had any problems with it.

David Zhang

4.8

out of

5

The furnace is very durable. I have used it for a variety of projects, and it has held up well. I am confident that it will last for many years to come.

Sophia Patel

4.7

out of

5

The technological advancement of the furnace is impressive. It is equipped with a variety of features that make it easy to use and efficient.

Mohamed Ali

4.9

out of

5

The furnace is easy to use. The controls are simple and straightforward, and the user manual is well-written.

Isabella Garcia

4.8

out of

5

The furnace is very efficient. It heats up quickly and evenly, and it maintains the desired temperature accurately.

Ahmed Khan

4.7

out of

5

The furnace is very versatile. I have used it for a variety of projects, and it has performed well in each case.

Anna Smith

4.9

out of

5

The furnace is very reliable. I have never had any problems with it, and I am confident that it will continue to perform well for many years to come.

Luis Perez

4.8

out of

5

The customer service is excellent. I have had a few questions about the furnace, and the customer service team has always been helpful and responsive.

Maria Gonzalez

4.7

out of

5

The furnace is very compact. It takes up very little space, and it is easy to move around.

David Chen

4.9

out of

5

The furnace is very energy-efficient. It uses very little energy to operate, which saves me money on my energy bills.

Sophia Patel

4.8

out of

5

The furnace is very quiet. I can run it in my lab without disturbing my colleagues.

Mohamed Ali

4.7

out of

5

The furnace is very safe. It has a number of safety features that protect me and my colleagues from injury.

Isabella Garcia

4.9

out of

5

The furnace is very easy to maintain. I can clean it and perform basic maintenance myself, which saves me time and money.

Ahmed Khan

4.8

out of

5

The furnace is very well-made. It is made of high-quality materials and is built to last.

Anna Smith

4.7

out of

5

The furnace is very user-friendly. The controls are simple and straightforward, and the user manual is well-written.

Luis Perez

4.9

out of

5

The furnace is very affordable. It is priced competitively, and it comes with a variety of features that make it a great value for the price.

Maria Gonzalez

4.8

out of

5

The furnace is very efficient. It heats up quickly and evenly, and it maintains the desired temperature accurately.

David Chen

PDF - Small vacuum tungsten wire sintering furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Dental Furnace

Download

Catalog of Vacuum Furnace

Download

Catalog of Pellet Press

Download

Catalog of Lab Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Vacuum pressure sintering furnace

Vacuum pressure sintering furnace

Vacuum pressure sintering furnaces are designed for high temperature hot pressing applications in metal and ceramic sintering. Its advanced features ensure precise temperature control, reliable pressure maintenance, and a robust design for seamless operation.

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

High Purity Tungsten (W) Sputtering Target / Powder / Wire / Block / Granule

High Purity Tungsten (W) Sputtering Target / Powder / Wire / Block / Granule

Find high-quality Tungsten (W) materials for your laboratory needs at affordable prices. We offer customized purities, shapes, and sizes of sputtering targets, coating materials, powders, and more.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Vertical tube furnace

Vertical tube furnace

Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

Related Articles

Mastering Vacuum Furnace Brazing: Techniques, Applications, and Advantages

Mastering Vacuum Furnace Brazing: Techniques, Applications, and Advantages

Unlock the full potential of vacuum furnace brazing with our comprehensive guide. Learn about its technology, advantages, applications, and how brazing ovens are used. Explore the principles behind vacuum brazing furnaces and their exceptional features.

Find out more
Exploring Tungsten Vacuum Furnaces: Operation, Applications, and Advantages

Exploring Tungsten Vacuum Furnaces: Operation, Applications, and Advantages

Discover the operation, applications, and benefits of tungsten vacuum furnaces in laboratory settings. Learn about KinTek's advanced features, control mechanisms, and the use of tungsten in high-temperature environments.

Find out more
Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Exploring the Advanced Capabilities of Spark Plasma Sintering (SPS) Furnaces

Dive into the world of Spark Plasma Sintering (SPS) furnaces, their innovative technology, and applications in material science. Learn how SPS furnaces revolutionize the sintering process with high-speed, efficiency, and precision.

Find out more
Comprehensive Guide to Vacuum Hot Press Furnace Application

Comprehensive Guide to Vacuum Hot Press Furnace Application

The Vacuum Hot Press Furnace is a versatile tool especially suited for sintering experiments involving non-metallic materials, carbon composites, ceramic materials and metal powder materials.

Find out more
Vacuum Laboratory Furnaces in Advanced Materials Research

Vacuum Laboratory Furnaces in Advanced Materials Research

In addition to size, there are several other key differences between industrial-scale and laboratory vacuum furnaces

Find out more
Introducing the Lab Vacuum Tube Furnaces

Introducing the Lab Vacuum Tube Furnaces

A vacuum tube furnace is a type of furnace that uses vacuum to isolate the process atmosphere from the external atmosphere.

Find out more
The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

Zirconia sintering furnaces are designed to give dental professionals the ability to create dental restorations with the highest level of precision and accuracy.

Find out more
Exploring the Benefits of Using Tungsten for Furnace Heating

Exploring the Benefits of Using Tungsten for Furnace Heating

Tungsten has a number of properties that make it well-suited for use in high-temperature furnaces.

Find out more
Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Explore the advanced features and applications of Spark Plasma Sintering Furnaces (SPS) in material science. Learn how SPS technology offers rapid, efficient, and versatile sintering for various materials.

Find out more
Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Exploring Spark Plasma Sintering Furnace (SPS): Technology, Applications, and Advantages

Dive into the comprehensive guide on Spark Plasma Sintering Furnace (SPS), covering its technology, applications in materials science, and significant advantages over traditional sintering methods.

Find out more
Vacuum Induction Furnace Fault Inspection: Essential Procedures and Solutions

Vacuum Induction Furnace Fault Inspection: Essential Procedures and Solutions

Discover the essential procedures for inspecting and troubleshooting common faults in vacuum induction furnace. Learn how to troubleshoot electrical failures, conduct post-operation inspections, maintain records, and monitor the furnace's operation. Take corrective actions to ensure the furnace's optimal performance. Find expert solutions for temperature abnormalities, vacuum level deviations, and furnace chamber inspections.

Find out more
Unlocking the Potential: Vacuum Levitation Induction Melting Furnace Explained

Unlocking the Potential: Vacuum Levitation Induction Melting Furnace Explained

Discover the working principles, applications, and advantages of vacuum levitation induction melting furnaces. Learn how this technology revolutionizes metal smelting, ensuring purity, efficiency, and environmental friendliness.

Find out more