Products Thermal Equipment Graphitization furnace Graphite Vacuum Furnace Bottom Discharge Graphitization Furnace for Carbon Materials
Graphite Vacuum Furnace Bottom Discharge Graphitization Furnace for Carbon Materials

Graphitization furnace

Graphite Vacuum Furnace Bottom Discharge Graphitization Furnace for Carbon Materials

Item Number : GF-06

Price varies based on specs and customizations


Volume(L)
1250 / 196 / 282 / 550 / 1000 / 1500
Power(KW)
150-800
Frequency(HZ)
1000 / 1500
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The Bottom Discharge Graphitization Furnace is a type of high-temperature furnace, typically used for graphitization and sintering of carbon materials. It can reach temperatures up to 3100°C, making it suitable for processing large bars and high-density blocks. The bottom-discharging design facilitates feeding and discharging materials, simplifying the process and improving efficiency.

The furnace employs medium frequency induction heating for rapid temperature rise and high efficiency. It features double-layer alumina brick insulation for optimal heat retention and fire resistance, minimizing heat loss and enhancing stability. The hydraulic lifting system allows for convenient loading and unloading at ground level, while the digital flow monitoring system ensures water flow monitoring and protection. Additionally, the furnace is equipped with a PLC water, electricity, gas automatic control and protection system for comprehensive monitoring and safety.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Applications

Bottom discharge graphitization furnaces are widely used in various industries, including:

  • Carbonization and graphitization of carbon materials
  • Shaped graphitization of carbon fiber filaments
  • Sintering of materials in a carbon environment

Features

  • Improved temperature uniformity: The unique furnace design ensures consistent temperatures throughout the furnace chamber, leading to more precise and reliable results.
  • Reduced energy consumption: The double-layer alumina brick insulation material minimizes heat loss, resulting in lower operating costs and increased energy efficiency.
  • Enhanced stability: The stable hydraulic lifting system and comprehensive PLC water, electricity, and gas automatic control and protection system ensure smooth and reliable operation, minimizing downtime and maintenance costs.
  • Convenient loading and unloading: The user-friendly design, with ground guide rails and material trucks, simplifies the loading and unloading process, providing increased efficiency and safety.
  • Advanced monitoring system: The digital flow monitoring system ensures precise control over the water flow and provides comprehensive protection, preventing equipment damage and ensuring safe operation.

Principle

The bottom discharge graphitization furnace uses medium frequency induction heating to quickly raise the temperature. The furnace design improves temperature uniformity. Double-layer alumina brick insulation material prevents short circuits and provides heat insulation, reducing heat loss. The hydraulic lifting system allows for convenient loading and unloading on the ground. The digital flow monitoring system and PLC control system ensure water, electricity, and gas monitoring and protection.

Advantages

  • High temperature resistance: The furnace can withstand ultra-high temperatures of up to 3100°C, making it suitable for graphitization and sintering of carbon materials such as large bars and high-density blocks.
  • Convenient feeding and discharging: The bottom-discharging design allows for easy loading and unloading of materials, facilitating efficient processing.
  • Improved temperature uniformity: The medium frequency induction heating technology ensures rapid temperature rise and enhanced temperature uniformity throughout the furnace chamber.
  • Energy efficiency and stability: Double-layer alumina brick insulation effectively reduces heat loss and improves equipment stability, resulting in lower energy consumption.
  • Enhanced safety: The digital flow monitoring system and comprehensive PLC control system provide real-time monitoring and protection against potential hazards, ensuring safe operation.
  • Versatile applications: The bottom-discharging vertical graphitization furnace is suitable for carbonization, graphitization, and sintering of various carbon materials, including carbon fiber filaments.

Technical parameters and specifications

Furnace body temperature uniformity: Using medium frequency induction heating, the temperature rises quickly and the efficiency is high. The unique furnace design greatly improves the furnace body temperature uniformity;

Low energy consumption and good stability: Double-layer alumina brick insulation material is used to prevent short circuit between carbon felt and coil, good heat insulation and fire resistance, small heat loss, and good equipment stability;

According to the needs of the sintering process time, a single power supply can be configured with multiple electric furnaces, and the multiple furnaces can be powered on to heat up and power off to cool down respectively to achieve continuous operation;

Digital flow monitoring system, each channel of water flow monitoring and protection in the power cabinet, furnace conversion using high-performance medium frequency contactor; comprehensive PLC water, electricity, gas automatic control and protection system.

Product model specifications GF-06-Ф40X100 GF-06-Ф50X100 GF-06-Ф60X100 GF-06-Ф70X140 GF-06-Ф90X160 GF-06-100X200
Volume(L) 125 196 282 550 1000 1500
Rated temperature(C) 2800 2800 2800 2800 2800 2600
Limit temperature(C) 3100 3100 3100 3100 300 2800
Effective heating area (mm) Ф400×1000 Ф500×1000 Ф600×1000 Ф700×1400 Ф900×1600 Ф1000×2000
Power(KW) 150 200 300 500 600 800
Frequency(HZ) 1500 1000 1000 1000 1000 1000
Temperature control method Japan Shima Electric Thermostat
heating method Induction heating
Vacuum system Rotary vane vacuum pump (for high vacuum requirements, Roots vacuum pump and oil diffusion pump are required)
sintering atmosphere N² Ar and other gases
Rated power supply voltage (V) 380
Rated heating voltage (V) 750
Vacuum limit (Pa) 100 (vacuum cold state)

FAQ

What Is A Graphitization Furnace?

A graphitization furnace is a specialized piece of equipment used to convert carbonaceous materials, such as petroleum coke or coal tar pitch, into graphite through high-temperature processing in an inert atmosphere. This process typically involves temperatures ranging from 2500 to 3000 degrees Celsius.

What Is A Graphite Vacuum Furnace Used For?

A graphite vacuum furnace is primarily used for high-temperature treatment of materials in a vacuum or protective atmosphere environment. It is ideal for processes such as vacuum sintering, graphitization, and sintering of carbon materials, carbon fiber materials, and other composite materials. Applications include metallurgy, electronics, aerospace, and battery production.

What Is A Vacuum Furnace Used For?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What Is The Purpose Of A Bottom Discharge Graphitization Furnace?

A bottom discharge graphitization furnace is used for carbonization and graphitization of carbon materials, as well as shaped graphitization of carbon fiber filaments and other materials that can be sintered in a carbon environment.

What Are The Key Features Of A Bottom Discharge Graphitization Furnace?

The key features of a bottom discharge graphitization furnace include medium frequency induction heating for quick temperature rise and high efficiency, double-layer alumina brick insulation for good heat insulation and fire resistance, a stable hydraulic lifting system for convenient loading and unloading, and a digital flow monitoring system for water flow monitoring and protection.

What Are The Advantages Of Using A Bottom Discharge Graphitization Furnace?

The advantages of using a bottom discharge graphitization furnace include improved temperature uniformity of the furnace body, low energy consumption, good stability, convenient loading and unloading, and a comprehensive PLC water, electricity, gas automatic control and protection system.

What Are The Main Applications Of Graphitization Furnaces?

Graphitization furnaces are crucial in industries such as metallurgy, electronics, and aerospace. They produce high-quality graphite products like electrodes, crucibles, and structural components, which are essential for various high-temperature applications.

What Are The Main Types Of Graphite Vacuum Furnaces?

The main types of graphite vacuum furnaces include horizontal graphite vacuum furnaces, vertical high-temperature graphitization furnaces, ultra-high temperature graphitization furnaces, continuous graphitization furnaces, and bottom discharge graphitization furnaces. Each type is designed for specific applications, such as large sample handling, uniform heating, or high-temperature graphitization up to 3100°C.

What Is The Process Of A Vacuum Furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What Are The Different Types Of Graphitization Furnaces?

There are several types of graphitization furnaces, including Horizontal High Temperature Graphitization Furnaces, Large Vertical Graphitization Furnaces, Continuous Graphitization Furnaces, Negative Material Graphitization Furnaces, Vertical High Temperature Graphitization Furnaces, Ultra-high Temperature Graphitization Furnaces, IGBT Experimental Graphitization Furnaces, High Thermal Conductivity Film Graphitization Furnaces, Bottom Discharge Graphitization Furnaces for Carbon Materials, and 2200°C Graphite Vacuum Furnaces.

How Does A Graphite Vacuum Furnace Work?

A graphite vacuum furnace operates by using graphite heating elements to generate high temperatures in a vacuum or inert gas environment. The furnace chamber is designed to create ideal black body conditions, ensuring uniform heating. Advanced temperature control systems, such as W-Re thermocouples and infrared thermometers, are used to maintain precise temperature regulation. The furnace is suitable for high-temperature treatments like graphitization and sintering.

What Gas Is Used In A Vacuum Furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

How Does A Graphitization Furnace Work?

A graphitization furnace works by subjecting carbonaceous materials to extremely high temperatures, typically between 2500 to 3000 degrees Celsius, in an inert atmosphere. This process rearranges the carbon atoms in the material, converting it into graphite, which has unique properties such as high thermal conductivity, low thermal expansion, and chemical inertness.

What Are The Advantages Of Using A Graphite Vacuum Furnace?

The advantages of using a graphite vacuum furnace include: 1. High compressive strength, making it durable and lightweight. 2. Increased furnace productivity due to its compatibility with high temperatures and non-reactivity with process gases like nitrogen and argon. 3. Longer service life, as graphite does not distort under extreme heat. 4. Energy efficiency, with reduced heating and cooling times and lower energy demand compared to other materials. 5. Uniform heating and precise temperature control, ensuring high-quality results in material processing.

What Is The Heating Element Used In A Vacuum Furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.

What Are The Advantages Of Using A Graphitization Furnace?

The advantages of using a graphitization furnace include the production of high-quality graphite with excellent thermal conductivity, low thermal expansion, and chemical inertness. These properties make graphite ideal for a wide range of high-temperature applications in industries like metallurgy, electronics, and aerospace.

What Temperature Range Can A Graphite Vacuum Furnace Achieve?

Graphite vacuum furnaces can achieve extremely high temperatures, typically ranging up to 2200°C for standard models and up to 3100°C for ultra-high temperature graphitization furnaces. This makes them suitable for advanced applications such as graphitization of carbon materials and high-temperature sintering.

What Industries Benefit From Graphite Vacuum Furnaces?

Industries that benefit from graphite vacuum furnaces include metallurgy, electronics, aerospace, and battery production. These furnaces are used for producing high-quality graphite products like electrodes, crucibles, and carbon fiber materials, as well as for advanced material processing and graphitization treatments.
View more faqs for this product

4.9

out of

5

The furnace delivered within the promised time frame, which was a lifesaver for our project. I highly recommend this product.

Dr. Aaliyah Doyle

4.8

out of

5

The furnace is a great value for the money. It's well-made and performs as advertised. I'm very satisfied with my purchase.

Dr. Jakob Ryan

4.9

out of

5

The furnace is of exceptional quality. It's built to last and has exceeded my expectations. I'm confident it will serve us well for many years to come.

Dr. Amelia Smith

4.7

out of

5

The furnace is very durable and has withstood the rigors of our demanding production environment. I'm impressed with its resilience.

Dr. William Smith

4.8

out of

5

The furnace incorporates cutting-edge technology that gives us a competitive edge. It's a game-changer for our research and development.

Dr. Emily Green

4.9

out of

5

The furnace is easy to use and maintain. The user-friendly design makes it a pleasure to operate.

Dr. Michael Brown

4.7

out of

5

The furnace is highly efficient and has significantly reduced our energy consumption. I'm pleased with its cost-saving benefits.

Dr. Isabella Garcia

4.8

out of

5

The furnace is environmentally friendly and meets all regulatory requirements. I'm happy to contribute to a more sustainable future with this purchase.

Dr. Ethan Jones

4.9

out of

5

The furnace is backed by excellent customer service. The team is responsive and knowledgeable, providing prompt support whenever needed.

Dr. Sophia Johnson

4.7

out of

5

The furnace has transformed our production process, leading to increased efficiency and productivity. I highly recommend it to any company looking to upgrade their equipment.

Dr. Oliver Wilson

4.9

out of

5

The furnace is an indispensable tool in our research. Its precision and reliability have enabled us to achieve groundbreaking results.

Dr. Mia Rodriguez

PDF - Graphite Vacuum Furnace Bottom Discharge Graphitization Furnace for Carbon Materials

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphite Vacuum Furnace

Download

Catalog of Vacuum Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Ultra-High Temperature Graphite Vacuum Graphitization Furnace

Ultra-High Temperature Graphite Vacuum Graphitization Furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Vertical High Temperature Graphite Vacuum Graphitization Furnace

Vertical High Temperature Graphite Vacuum Graphitization Furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Graphite Vacuum Continuous Graphitization Furnace

Graphite Vacuum Continuous Graphitization Furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.

Graphite Vacuum Furnace IGBT Experimental Graphitization Furnace

Graphite Vacuum Furnace IGBT Experimental Graphitization Furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Large Vertical Graphite Vacuum Graphitization Furnace

Large Vertical Graphite Vacuum Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Graphite Vacuum Furnace Negative Material Graphitization Furnace

Graphite Vacuum Furnace Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

Graphite Vacuum Furnace High Thermal Conductivity Film Graphitization Furnace

Graphite Vacuum Furnace High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Horizontal High Temperature Graphite Vacuum Graphitization Furnace

Horizontal High Temperature Graphite Vacuum Graphitization Furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Vacuum Arc Induction Melting Furnace

Vacuum Arc Induction Melting Furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Vacuum Hot Press Furnace Heated Vacuum Press Machine Tube Furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Vacuum Heat Treat and Molybdenum Wire Sintering Furnace for Vacuum Sintering

Vacuum Heat Treat and Molybdenum Wire Sintering Furnace for Vacuum Sintering

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

Vacuum Heat Treat Furnace with Ceramic Fiber Liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

High Pressure Laboratory Vacuum Tube Furnace Quartz Tubular Furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Silicon Carbide SiC Thermal Heating Elements for Electric Furnace

Silicon Carbide SiC Thermal Heating Elements for Electric Furnace

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

Laboratory Muffle Oven Furnace Bottom Lifting Muffle Furnace

Laboratory Muffle Oven Furnace Bottom Lifting Muffle Furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

Vacuum Induction Melting Furnace Arc Melting Furnace

Vacuum Induction Melting Furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Related Articles

Guide to Bottom Loading Furnace

Guide to Bottom Loading Furnace

A bottom loading furnace is a type of industrial furnace that is designed for the efficient processing of materials by heating them to high temperatures.

Find out more
What is activated carbon regeneration Rotary Furnace

What is activated carbon regeneration Rotary Furnace

Electric activated carbon regeneration furnace is one typical electric external heating rotary furnace

Find out more
Guide To QUENCHING FURNACE

Guide To QUENCHING FURNACE

A quenching furnace is a type of heat treatment furnace that is commonly used in industrial production. It is used to harden or temper materials, and plays an important role in the production process. Quenching furnaces are available in a variety of sizes and configurations, and can be custom-designed to meet the specific needs of the application.

Find out more
Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Unlock the potential of graphite vacuum furnaces for high-temperature material treatment. Learn about their efficiency, customization options, automation, and key considerations for graphite rod usage.

Find out more
The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

Different feedstocks have their own unique advantages and disadvantages for pyrolysis, which must be carefully considered when selecting the most suitable feedstock for a particular application.

Find out more
Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Discusses the selection, performance, installation, and maintenance of graphite rods in vacuum sintering furnaces.

Find out more
Advances in Carburizing Technology: Conventional vs. Low Pressure Vacuum Carburizing

Advances in Carburizing Technology: Conventional vs. Low Pressure Vacuum Carburizing

This article compares conventional carburizing with low-pressure vacuum carburizing, highlighting their differences and advantages.

Find out more