Products Thermal Equipment Graphitization furnace Bottom discharge graphitization furnace for carbon materials
Bottom discharge graphitization furnace for carbon materials

Graphitization furnace

Bottom discharge graphitization furnace for carbon materials

Item Number : GF-06

Price varies based on specs and customizations


Volume(L)
1250 / 196 / 282 / 550 / 1000 / 1500
Power(KW)
150-800
Frequency(HZ)
1000 / 1500
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The Bottom Discharge Graphitization Furnace is a type of high-temperature furnace, typically used for graphitization and sintering of carbon materials. It can reach temperatures up to 3100°C, making it suitable for processing large bars and high-density blocks. The bottom-discharging design facilitates feeding and discharging materials, simplifying the process and improving efficiency.

The furnace employs medium frequency induction heating for rapid temperature rise and high efficiency. It features double-layer alumina brick insulation for optimal heat retention and fire resistance, minimizing heat loss and enhancing stability. The hydraulic lifting system allows for convenient loading and unloading at ground level, while the digital flow monitoring system ensures water flow monitoring and protection. Additionally, the furnace is equipped with a PLC water, electricity, gas automatic control and protection system for comprehensive monitoring and safety.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Applications

Bottom discharge graphitization furnaces are widely used in various industries, including:

  • Carbonization and graphitization of carbon materials
  • Shaped graphitization of carbon fiber filaments
  • Sintering of materials in a carbon environment

Features

  • Improved temperature uniformity: The unique furnace design ensures consistent temperatures throughout the furnace chamber, leading to more precise and reliable results.
  • Reduced energy consumption: The double-layer alumina brick insulation material minimizes heat loss, resulting in lower operating costs and increased energy efficiency.
  • Enhanced stability: The stable hydraulic lifting system and comprehensive PLC water, electricity, and gas automatic control and protection system ensure smooth and reliable operation, minimizing downtime and maintenance costs.
  • Convenient loading and unloading: The user-friendly design, with ground guide rails and material trucks, simplifies the loading and unloading process, providing increased efficiency and safety.
  • Advanced monitoring system: The digital flow monitoring system ensures precise control over the water flow and provides comprehensive protection, preventing equipment damage and ensuring safe operation.

Principle

The bottom discharge graphitization furnace uses medium frequency induction heating to quickly raise the temperature. The furnace design improves temperature uniformity. Double-layer alumina brick insulation material prevents short circuits and provides heat insulation, reducing heat loss. The hydraulic lifting system allows for convenient loading and unloading on the ground. The digital flow monitoring system and PLC control system ensure water, electricity, and gas monitoring and protection.

Advantages

  • High temperature resistance: The furnace can withstand ultra-high temperatures of up to 3100°C, making it suitable for graphitization and sintering of carbon materials such as large bars and high-density blocks.
  • Convenient feeding and discharging: The bottom-discharging design allows for easy loading and unloading of materials, facilitating efficient processing.
  • Improved temperature uniformity: The medium frequency induction heating technology ensures rapid temperature rise and enhanced temperature uniformity throughout the furnace chamber.
  • Energy efficiency and stability: Double-layer alumina brick insulation effectively reduces heat loss and improves equipment stability, resulting in lower energy consumption.
  • Enhanced safety: The digital flow monitoring system and comprehensive PLC control system provide real-time monitoring and protection against potential hazards, ensuring safe operation.
  • Versatile applications: The bottom-discharging vertical graphitization furnace is suitable for carbonization, graphitization, and sintering of various carbon materials, including carbon fiber filaments.

Technical parameters and specifications

Furnace body temperature uniformity: Using medium frequency induction heating, the temperature rises quickly and the efficiency is high. The unique furnace design greatly improves the furnace body temperature uniformity;

Low energy consumption and good stability: Double-layer alumina brick insulation material is used to prevent short circuit between carbon felt and coil, good heat insulation and fire resistance, small heat loss, and good equipment stability;

According to the needs of the sintering process time, a single power supply can be configured with multiple electric furnaces, and the multiple furnaces can be powered on to heat up and power off to cool down respectively to achieve continuous operation;

Digital flow monitoring system, each channel of water flow monitoring and protection in the power cabinet, furnace conversion using high-performance medium frequency contactor; comprehensive PLC water, electricity, gas automatic control and protection system.

Product model specifications GF-06-Ф40X100 GF-06-Ф50X100 GF-06-Ф60X100 GF-06-Ф70X140 GF-06-Ф90X160 GF-06-100X200
Volume(L) 125 196 282 550 1000 1500
Rated temperature(C) 2800 2800 2800 2800 2800 2600
Limit temperature(C) 3100 3100 3100 3100 300 2800
Effective heating area (mm) Ф400×1000 Ф500×1000 Ф600×1000 Ф700×1400 Ф900×1600 Ф1000×2000
Power(KW) 150 200 300 500 600 800
Frequency(HZ) 1500 1000 1000 1000 1000 1000
Temperature control method Japan Shima Electric Thermostat
heating method Induction heating
Vacuum system Rotary vane vacuum pump (for high vacuum requirements, Roots vacuum pump and oil diffusion pump are required)
sintering atmosphere N² Ar and other gases
Rated power supply voltage (V) 380
Rated heating voltage (V) 750
Vacuum limit (Pa) 100 (vacuum cold state)

FAQ

What is a graphitization furnace?

A graphitization furnace is a specialized piece of equipment used to convert carbonaceous materials, such as petroleum coke or coal tar pitch, into graphite through high-temperature processing in an inert atmosphere. This process typically involves temperatures ranging from 2500 to 3000 degrees Celsius.

What is the purpose of a bottom discharge graphitization furnace?

A bottom discharge graphitization furnace is used for carbonization and graphitization of carbon materials, as well as shaped graphitization of carbon fiber filaments and other materials that can be sintered in a carbon environment.

What are the key features of a bottom discharge graphitization furnace?

The key features of a bottom discharge graphitization furnace include medium frequency induction heating for quick temperature rise and high efficiency, double-layer alumina brick insulation for good heat insulation and fire resistance, a stable hydraulic lifting system for convenient loading and unloading, and a digital flow monitoring system for water flow monitoring and protection.

What are the advantages of using a bottom discharge graphitization furnace?

The advantages of using a bottom discharge graphitization furnace include improved temperature uniformity of the furnace body, low energy consumption, good stability, convenient loading and unloading, and a comprehensive PLC water, electricity, gas automatic control and protection system.

What are the main applications of graphitization furnaces?

Graphitization furnaces are crucial in industries such as metallurgy, electronics, and aerospace. They produce high-quality graphite products like electrodes, crucibles, and structural components, which are essential for various high-temperature applications.

What are the different types of graphitization furnaces?

There are several types of graphitization furnaces, including Horizontal High Temperature Graphitization Furnaces, Large Vertical Graphitization Furnaces, Continuous Graphitization Furnaces, Negative Material Graphitization Furnaces, Vertical High Temperature Graphitization Furnaces, Ultra-high Temperature Graphitization Furnaces, IGBT Experimental Graphitization Furnaces, High Thermal Conductivity Film Graphitization Furnaces, Bottom Discharge Graphitization Furnaces for Carbon Materials, and 2200°C Graphite Vacuum Furnaces.

Why pyrolysis of biomass?

Pyrolysis of biomass is done to convert waste biomass into valuable products like biofuels, chemicals, and other substances. It offers environmental and economic benefits like the reduction of greenhouse gas emissions compared to fossil fuels, the production of renewable energy, and the potential for carbon sequestration through the production of biochar. Although there are cons to the process like high capital and operating costs, technical challenges in scaling up the process, and potential for emissions of pollutants, the potential benefits make it a sustainable and carbon-neutral source of energy and materials.

How does a graphitization furnace work?

A graphitization furnace works by subjecting carbonaceous materials to extremely high temperatures, typically between 2500 to 3000 degrees Celsius, in an inert atmosphere. This process rearranges the carbon atoms in the material, converting it into graphite, which has unique properties such as high thermal conductivity, low thermal expansion, and chemical inertness.

What are the advantages of biomass pyrolysis?

The advantages of biomass pyrolysis include high energy efficiency, production of valuable by-products such as bio-oil and biochar, low emissions, carbon neutrality, flexibility, and reduced dependence on fossil fuels. However, there are also disadvantages such as high capital costs, complexity, feedstock variability, and pollution. Suitable biomass feedstocks include wood waste, agricultural waste, municipal solid waste, algae, and biomass from invasive species. Overall, biomass pyrolysis offers a number of environmental and economic benefits, but it is important to carefully consider the potential impacts of the process and to ensure responsible implementation.

What are the advantages of using a graphitization furnace?

The advantages of using a graphitization furnace include the production of high-quality graphite with excellent thermal conductivity, low thermal expansion, and chemical inertness. These properties make graphite ideal for a wide range of high-temperature applications in industries like metallurgy, electronics, and aerospace.

What are the steps of biomass pyrolysis?

The steps of biomass pyrolysis include drying, pyrolysis, and cooling. In the drying stage, moisture is removed from the biomass. The pyrolysis stage involves heating the dried biomass in the absence of oxygen to temperatures between 300-900°C, causing it to decompose into bio-oil, biochar, and syngas. In the final stage, the pyrolysis products are cooled and separated into their desired forms. The bio-oil can be used as a fuel, biochar as a soil amendment, and syngas as a fuel or for electricity generation. The pyrolysis process may vary depending on the feedstock used and the desired end product.

Which biomass is suitable for pyrolysis?

Various types of biomass are suitable for pyrolysis, including wood, agricultural residues, and even municipal waste. Wood sources such as forest trees and branches are still the main source of biomass for various applications. Agricultural residues such as sugarcane bagasse, rice straw, cotton stalks, and wheat straw can also be used for pyrolysis. Municipal waste is also considered biomass. The amount of biomass available annually is approximately 105 billion metric tons of carbon per year.
View more faqs for this product

4.9

out of

5

The furnace delivered within the promised time frame, which was a lifesaver for our project. I highly recommend this product.

Dr. Aaliyah Doyle

4.8

out of

5

The furnace is a great value for the money. It's well-made and performs as advertised. I'm very satisfied with my purchase.

Dr. Jakob Ryan

4.9

out of

5

The furnace is of exceptional quality. It's built to last and has exceeded my expectations. I'm confident it will serve us well for many years to come.

Dr. Amelia Smith

4.7

out of

5

The furnace is very durable and has withstood the rigors of our demanding production environment. I'm impressed with its resilience.

Dr. William Smith

4.8

out of

5

The furnace incorporates cutting-edge technology that gives us a competitive edge. It's a game-changer for our research and development.

Dr. Emily Green

4.9

out of

5

The furnace is easy to use and maintain. The user-friendly design makes it a pleasure to operate.

Dr. Michael Brown

4.7

out of

5

The furnace is highly efficient and has significantly reduced our energy consumption. I'm pleased with its cost-saving benefits.

Dr. Isabella Garcia

4.8

out of

5

The furnace is environmentally friendly and meets all regulatory requirements. I'm happy to contribute to a more sustainable future with this purchase.

Dr. Ethan Jones

4.9

out of

5

The furnace is backed by excellent customer service. The team is responsive and knowledgeable, providing prompt support whenever needed.

Dr. Sophia Johnson

4.7

out of

5

The furnace has transformed our production process, leading to increased efficiency and productivity. I highly recommend it to any company looking to upgrade their equipment.

Dr. Oliver Wilson

4.9

out of

5

The furnace is an indispensable tool in our research. Its precision and reliability have enabled us to achieve groundbreaking results.

Dr. Mia Rodriguez

PDF - Bottom discharge graphitization furnace for carbon materials

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Biomass Pyrolysis

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

laboratory vacuum tilt rotary tube furnace

laboratory vacuum tilt rotary tube furnace

Discover the versatility of Laboratory Rotary Furnace: Ideal for calcination, drying, sintering, and high-temperature reactions. Adjustable rotating and tilting functions for optimal heating. Suitable for vacuum and controlled atmosphere environments. Learn more now!

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Carbon Graphite Boat -Laboratory Tube Furnace with Cover

Covered Carbon Graphite Boat Laboratory Tube Furnaces are specialized vessels or vessels made of graphite material designed to withstand extreme high temperatures and chemically aggressive environments.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Bottom lifting furnace

Bottom lifting furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

Slide PECVD tube furnace with liquid gasifier PECVD machine

Slide PECVD tube furnace with liquid gasifier PECVD machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

Hydrogen atmosphere furnace

Hydrogen atmosphere furnace

KT-AH Hydrogen atmosphere furnace - induction gas furnace for sintering/annealing with built-in safety features, dual housing design, and energy-saving efficiency. Ideal for lab and industrial use.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

1700℃ Tube furnace with Alumina tube

1700℃ Tube furnace with Alumina tube

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

Split chamber CVD tube furnace with vacuum station CVD machine

Split chamber CVD tube furnace with vacuum station CVD machine

Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.

Related Articles

Guide to Bottom Loading Furnace

Guide to Bottom Loading Furnace

A bottom loading furnace is a type of industrial furnace that is designed for the efficient processing of materials by heating them to high temperatures.

Find out more
What is activated carbon regeneration Rotary Furnace

What is activated carbon regeneration Rotary Furnace

Electric activated carbon regeneration furnace is one typical electric external heating rotary furnace

Find out more
Guide To QUENCHING FURNACE

Guide To QUENCHING FURNACE

A quenching furnace is a type of heat treatment furnace that is commonly used in industrial production. It is used to harden or temper materials, and plays an important role in the production process. Quenching furnaces are available in a variety of sizes and configurations, and can be custom-designed to meet the specific needs of the application.

Find out more
Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Unlock the potential of graphite vacuum furnaces for high-temperature material treatment. Learn about their efficiency, customization options, automation, and key considerations for graphite rod usage.

Find out more
The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

Different feedstocks have their own unique advantages and disadvantages for pyrolysis, which must be carefully considered when selecting the most suitable feedstock for a particular application.

Find out more
Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Discusses the selection, performance, installation, and maintenance of graphite rods in vacuum sintering furnaces.

Find out more