Products Thermal Equipment Graphitization furnace High Thermal Conductivity Film Graphitization Furnace
High Thermal Conductivity Film Graphitization Furnace

Graphitization furnace

High Thermal Conductivity Film Graphitization Furnace

Item Number : GF-03

Price varies based on specs and customizations


Maximum operating temperature
3100℃
Commonly used temperature
2800℃
Temperature uniformity
≤±25℃
Temperature measurement
far-infrared optical temperature measurement (1000-3200℃)
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

A high thermal conductivity film graphitization furnace is a specialized equipment designed for the graphitization process of high thermal conductivity films, particularly polyimide (PI) films. This furnace utilizes medium frequency induction heating to achieve rapid temperature rise and high efficiency. Its unique design ensures exceptional temperature uniformity throughout the furnace chamber. The furnace is constructed with double-layer alumina brick insulation to prevent short circuits, providing excellent heat insulation and fire resistance, resulting in minimal heat loss and enhanced equipment stability. It offers the flexibility of configuring multiple electric furnaces with a single power supply, allowing continuous operation by powering on furnaces for heating and powering off for cooling. The furnace is equipped with a digital flow monitoring system for each water channel, ensuring comprehensive protection in the power cabinet. It employs high-performance medium frequency contactors and a PLC-based automatic control and protection system for water, electricity, and gas.

High Thermal Conductivity Film Graphitization FurnaceHigh Thermal Conductivity Film Graphitization FurnaceHigh Thermal Conductivity Film Graphitization Furnace

Applications

The high thermal conductivity film graphitization furnace is widely used in various industries, including:

  • Ceramic firing
  • Carbide growth
  • Carbonization
  • Graphitization
  • Sintering
  • Annealing
  • Brazing
  • Degassing

Features

The High thermal conductivity film graphitization furnace feature:

  • Temperature uniformity: The unique furnace design ensures excellent temperature uniformity throughout the furnace chamber, resulting in consistent and high-quality graphitization.
  • Energy efficiency: Double-layer alumina brick insulation minimizes heat loss, reducing energy consumption and operating costs.
  • Stability: The high-performance medium frequency contactor and comprehensive PLC control system ensure stable and reliable operation.
  • Multiple furnace operation: A single power supply can be configured with multiple furnaces, allowing for continuous operation and increased productivity.
  • Digital flow monitoring: Each channel of water flow is monitored and protected in the power cabinet, ensuring safe and efficient operation.

Principle

The high thermal conductivity film graphitization furnace uses medium frequency induction heating to rapidly increase the temperature of the furnace body, greatly improving temperature uniformity. The double-layer alumina brick insulation material prevents short circuits between carbon felt and the coil, providing good heat insulation and fire resistance, reducing heat loss, and ensuring equipment stability. The furnace can be configured with multiple power supplies to meet the sintering process time requirements, enabling continuous operation with multiple furnaces heating up and cooling down separately. A digital flow monitoring system monitors and protects each water channel in the power cabinet, while the furnace conversion uses a high-performance medium frequency contactor. The PLC water, electricity, gas automatic control and protection system provides comprehensive monitoring and protection.

Advantages

  • High temperature uniformity: The furnace's unique design ensures excellent temperature uniformity throughout the furnace chamber, resulting in consistent and reliable results.
  • Low energy consumption: The double-layer alumina brick insulation material provides excellent heat insulation and fire resistance, minimizing heat loss and reducing energy consumption.
  • Good stability: The furnace's robust construction and high-performance components ensure stable and reliable operation, even under demanding conditions.
  • Continuous operation: Multiple furnaces can be powered on and off independently, allowing for continuous operation and maximizing productivity.
  • Comprehensive control system: The PLC-based water, electricity, and gas control system provides comprehensive monitoring and protection, ensuring safe and efficient operation.
  • Digital flow monitoring system: Each channel of water flow is monitored and protected in the power cabinet, providing real-time feedback and preventing potential issues.
  • High-performance medium frequency contactor: The use of high-performance medium frequency contactors ensures reliable and efficient power conversion.

Technical parameters

Maximum operating temperature: 3100℃

Commonly used temperature: 2800℃

Working atmosphere in the furnace: vacuum, hydrogen, nitrogen, inert gas, etc.

Temperature uniformity: ≤±25℃

Temperature measurement: far-infrared optical temperature measurement (1000-3200℃);

Temperature measurement accuracy: 0.2~0.75%

Temperature control: program control and manual control; temperature control accuracy: ±1℃

Product model specifications GF-03-Ф40×100 GF-03-Ф50×100 GF-03-Ф60×100 GF-03-Ф90×160
Volume(L) 125 196 282 1000
Rated temperature(C) 2800 2800 2800 2800
Limit temperature(C) 3100 3100 3100 3100
Effective heating area (mm) Ф400×1000 Ф500×1000 Ф600×1000 Ф900×1000
Power(KW) 150 200 30 600
Frequency(HZ) 1500 1000 1000 1000
Temperature control method Japan Shima Electric Thermostat
Heating method Induction heating
Vacuum system Rotary vane vacuum pump (for high vacuum requirements, Roots vacuum pump and oil diffusion pump are required)
Sintering atmosphere N² Ar and other gases
Rated power supply voltage (V) 380
Rated heating voltage (V) 750
Vacuum limit (Pa) 100 (vacuum cold state)

FAQ

What Is A Graphitization Furnace?

A graphitization furnace is a specialized piece of equipment used to convert carbonaceous materials, such as petroleum coke or coal tar pitch, into graphite through high-temperature processing in an inert atmosphere. This process typically involves temperatures ranging from 2500 to 3000 degrees Celsius.

What Is A Tube Furnace?

Laboratory tube furnace is one classic external heating high temperature tube furnace, also named hot wall heating furnace.

According to the different working temperature, furnace tube material usually can be transparent quartz tubes, high purity alumina ceramic tubes and high strength metal alloy tubes.

To meet different thermal researching purposes, tube furnace can be designed with multi heating zones, so as to have a flexible control of temperature gradient in the tube working chamber; furnace tube can work with a controlled atmosphere working environment or a high vacuum working environment.

What Are Muffle Furnace Used For?

Muffle furnaces are mainly used for high-temperature applications in industrial manufacturing and laboratory environments. They provide a controlled and insulated environment for heating materials, allowing precise temperature control. Muffle furnaces are ideal for ashing samples, heat-treating applications, and materials research. They are commonly used for melting glass, creating enamel coatings, technical ceramics, soldering, and brazing. Muffle furnaces use technology and design to achieve greater control of temperature uniformity and isolate heated materials from combustion contaminants.

What Are The Main Types Of Rubber Processing Machines?

The main types of rubber processing machines include twin screw extruders, plate vulcanizing presses, open mixing mills, small lab rubber calendering machines, lab internal rubber mixers, lab plastic PVC calenders, automatic high temperature heat presses, and more. Each type is designed for specific tasks such as mixing, vulcanizing, calendering, and extruding rubber materials.

What Are The Advantages Of Using A High Thermal Conductivity Film Graphitization Furnace?

High thermal conductivity film graphitization furnaces offer several advantages, including:- Improved temperature - uniformity throughout the furnace chamber- Reduced energy consumption and improved stability- Ability to configure multiple furnaces with a single power supply for continuous operation- Comprehensive PLC water, electricity, gas automatic control and protection system

What Is The Difference Between A High Thermal Conductivity Film Graphitization Furnace And A Graphite Tube Furnace?

High thermal conductivity film graphitization furnaces use medium frequency induction heating to achieve rapid temperature rise and high efficiency, while graphite tube furnaces use graphite tubes to heat samples or workpieces. Graphite tube furnaces offer advantages such as fast heating speed, good temperature uniformity, and easy operation.

What Are The Applications Of High Thermal Conductivity Film Graphitization Furnaces?

- High thermal conductivity film graphitization furnaces are used in various applications, including:- Production of high thermal conductivity film (PI film)- Graphitization treatment- Graphene growth- Carbon nanotubes preparation

What Are The Main Applications Of Graphitization Furnaces?

Graphitization furnaces are crucial in industries such as metallurgy, electronics, and aerospace. They produce high-quality graphite products like electrodes, crucibles, and structural components, which are essential for various high-temperature applications.

How Does A Tube Furnace Work?

Tube furnace heating elements are placed surrounding the cylindrical cavity, furnace can only heat the samples in the cylindrical cavity through indirect thermal radiation, since furnace tube can prevent sample material from contacting with furnace heating elements and insulation materials, so tube furnace creates a clean isolated heat chamber and reduce risks of the sample material contaminating by the furnace.

What Are The Types Of Muffle Furnace?

Box furnace, tube furnace, crucible furnace, split furnace, vacuum furnace, and multi-zone furnace are some types of muffle furnaces. The choice of muffle furnace depends on the specific application and requirements of the user.

What Is The Principle Of Operation For A Twin Screw Extruder Plastic Granulation Machine?

A twin screw extruder plastic granulation machine operates by mixing and processing raw materials like engineering plastics, modified plastics, waste plastics, and masterbatches through a twin screw mechanism. This machine ensures thorough mixing and processing for various plastic materials.

What Is A Atmospheric Furnace?

An atmospheric furnace is a type of laboratory equipment that provides a controlled environment for various procedures. It is designed to maintain a specific temperature and atmosphere, which is essential for completing tasks that require precision and accuracy. The furnace is sealed tightly to ensure the proper environment, and the mixture of gases used is precisely measured to achieve the desired results. This type of furnace is commonly used for bonding, curing, and heat treating of samples that are prone to oxidation in an inert atmosphere.

What Are The Different Types Of Graphitization Furnaces?

There are several types of graphitization furnaces, including Horizontal High Temperature Graphitization Furnaces, Large Vertical Graphitization Furnaces, Continuous Graphitization Furnaces, Negative Material Graphitization Furnaces, Vertical High Temperature Graphitization Furnaces, Ultra-high Temperature Graphitization Furnaces, IGBT Experimental Graphitization Furnaces, High Thermal Conductivity Film Graphitization Furnaces, Bottom Discharge Graphitization Furnaces for Carbon Materials, and 2200°C Graphite Vacuum Furnaces.

What Is The Application For Tube Furnace?

Tubular furnace is mainly used in metallurgy, glass, heat treatment, lithium anode and cathode materials, new energy, abrasives and other industries, and is a professional equipment for measuring materials under certain temperature conditions.

Tube furnace features simple structure, easy operation, easy control and continuous production.

Tube furnace is also widely applied in the CVD (chemical vapor deposition) and plasma enhanced CVD systems.

What Is Muffle Furnace In Chemistry?

A muffle furnace is a type of oven equipment used in chemistry that can reach high temperatures and provides a controlled and insulated environment for heating materials, allowing precise temperature control. It separates the object to be heated from all byproducts of combustion from the heat source. Muffle furnaces are used in solid-state reactions, such as reducing metals or creating oxides, and for limiting oxygen exposure in materials. They are also used in high-temperature chemical vapor deposition processes and are ideal for ashing samples, heat-treating applications, and materials research.

What Is The Purpose Of A Plate Vulcanizing Press In Rubber Processing?

A plate vulcanizing press is used for the vulcanization of rubber products. Vulcanization is a critical process in rubber manufacturing that improves the material's strength, elasticity, and resistance to heat and chemicals.

What Is The Use Of Atmosphere Furnace?

An atmosphere furnace is used in laboratories to provide a controlled environment for various processes. The furnace allows for precise temperature and atmospheric control, which is critical for procedures that require exact temperatures. The furnace is sealed tightly to ensure the proper environment for the project. The atmosphere furnace's main component is the correct mixture of gases, which is essential to the success of the project. The atmosphere furnace plays a vital role in the success of the heat-treating process. It is used to protect the material being processed or to allow the surface of the material being processed to change.

How Does A Graphitization Furnace Work?

A graphitization furnace works by subjecting carbonaceous materials to extremely high temperatures, typically between 2500 to 3000 degrees Celsius, in an inert atmosphere. This process rearranges the carbon atoms in the material, converting it into graphite, which has unique properties such as high thermal conductivity, low thermal expansion, and chemical inertness.

How Many Different Types Tube Furnace?

Tube furnace can work with different mechanical functions smoothly, so there are many different types tube furnace variations for different experiment purposes, typical furnace furnaces are as below:

  • Horizontal tube furnace
  • Vertical tube furnace
  • Split tube furnace
  • Rotary tube furnace
  • Tilting tube furnace
  • Sliding tube furnace
  • Fast heating and cooling tube furnace
  • Continuous feeding and discharging tube furnace

What Is The Use Of Muffle Furnace For Ash?

Muffle furnaces are commonly used for ashing samples, which involves heating materials to high temperatures to determine their percentage of ash content. This process is helpful in testing and treating materials in various industries such as cement making, foundry, and nuclear sectors. The standard muffle furnace is also used for manufacturing glass, ceramics, and other materials. Overall, muffle furnaces play a vital role in material testing and treatment at high temperatures, making them a crucial apparatus in many industries.

How Does An Open Mixing Mill For Rubber Work?

An open mixing mill for rubber works by mixing and dispersing rubber, plastic raw materials, pigments, masterbatches, and other high molecular polymers. The machine consists of two rollers that rotate in opposite directions, ensuring uniform mixing and dispersion of the materials.

How Does An Atmosphere Furnace Work?

An atmosphere furnace works by heating materials or components in a controlled environment to achieve specific heat treatment or processing objectives. The furnace chamber is designed to accommodate the desired materials and can be sealed to maintain the selected atmosphere. The atmosphere is typically controlled by introducing specific gases or gas mixtures into the chamber, either continuously or intermittently, to create the desired environment. The furnace is equipped with heating elements, insulation, and temperature control systems to achieve and maintain the desired temperature. The materials or components are placed within the furnace chamber, and the furnace is heated to the desired temperature and held for the required duration to achieve the desired heat treatment or processing effect.

What Are The Advantages Of Using A Graphitization Furnace?

The advantages of using a graphitization furnace include the production of high-quality graphite with excellent thermal conductivity, low thermal expansion, and chemical inertness. These properties make graphite ideal for a wide range of high-temperature applications in industries like metallurgy, electronics, and aerospace.

What Are The Advantages Of Using A Tube Furnace?

Tube furnaces offer several advantages for high-temperature applications. Firstly, they provide precise and uniform temperature control, allowing for accurate and repeatable heating processes. This is crucial for materials research and heat treatment applications where temperature consistency is essential. Secondly, tube furnaces have a compact design, making them suitable for use in limited laboratory or industrial spaces. They are also versatile and can accommodate a wide range of sample sizes and shapes. Additionally, tube furnaces are energy-efficient, as they typically have good insulation and can reach high temperatures quickly. Some models also offer programmable temperature profiles, allowing for automated heating and cooling cycles. Overall, tube furnaces enable efficient and controlled high-temperature processes in various scientific and industrial fields.

What Is The Temperature Of Muffle Furnace?

The temperature range of a muffle furnace is between 800°C to 1800°C, with a maximum temperature of 1473 K (1200°C; 2192°F). It is crucial to choose a furnace that will reach the desired temperature for your applications. Muffle furnaces are commonly used in metallurgy, glassmaking, ceramics, and other industries that require materials to be melted or heated to high temperatures. It usually takes approximately an hour for a muffle furnace to reach maximum temperature.

What Are The Advantages Of Using A Lab Internal Rubber Mixer?

A lab internal rubber mixer offers advantages such as efficient mixing, kneading, and dispersing of various chemical raw materials like plastics, rubber, synthetic rubber, and low-viscosity materials. It is particularly useful for laboratory settings where precise control and small batch processing are required.

What Are The Advantages Of Using Atmosphere Furnaces?

Atmosphere furnaces offer several advantages for heat treatment and processing applications. The controlled atmosphere within the furnace allows for precise control over the material's surface chemistry and microstructure, resulting in improved mechanical properties or desired surface characteristics. The ability to create specific atmospheres, such as oxidizing, reducing, or inert, provides flexibility in achieving different heat treatment objectives. Atmosphere furnaces enable the processing of a wide range of materials, including metals, alloys, ceramics, and composites, allowing for diverse applications across various industries. The controlled environment within the furnace also helps prevent oxidation or decarburization of the materials during heating, ensuring consistent and reliable results. Additionally, atmosphere furnaces can be equipped with advanced temperature control and automation systems, enhancing process repeatability, efficiency, and productivity.

What Safety Precautions Should Be Taken When Using A Tube Furnace?

When using a tube furnace, it is important to follow safety precautions to prevent accidents and ensure operator and sample safety. Firstly, proper training should be provided to personnel operating the furnace to ensure they understand its operation, safety features, and emergency procedures. Secondly, appropriate personal protective equipment (PPE), such as heat-resistant gloves, goggles, and lab coats, should be worn to protect against burns and potential hazards. Thirdly, it is crucial to properly load the sample or material inside the furnace, ensuring it is securely positioned and does not obstruct airflow. Adequate ventilation should be provided to remove any potential gases or fumes generated during heating. It is also important to regularly inspect and maintain the furnace, including checking the heating elements and electrical connections, to ensure safe and reliable operation.

What Applications Does A Small Lab Rubber Calendering Machine Have?

A small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories and small-scale production facilities for creating films, coatings, and laminates with precise thickness and surface finish.

What Factors Should Be Considered When Selecting An Atmosphere Furnace?

Several factors should be considered when selecting an atmosphere furnace. The desired temperature range and heating rate capability of the furnace should match the requirements of the heat treatment or processing application. The furnace size and capacity should be suitable for the size and quantity of materials or components to be processed. The control and monitoring features, such as temperature control accuracy, gas flow control, and data logging capabilities, should be evaluated to ensure precise and reliable operation. The compatibility of the furnace design with the desired atmosphere and gas handling requirements should also be taken into account. Other factors to consider include safety features, maintenance requirements, and cost. It is advisable to consult with furnace manufacturers or industry experts to select the most suitable atmosphere furnace for specific application needs.

How Does An Automatic High Temperature Heat Press Machine Function?

An automatic high temperature heat press machine is designed for pressing, sintering, and processing materials in a high temperature environment. It can operate at temperatures ranging from hundreds to thousands of degrees Celsius, making it suitable for various high temperature process requirements.

What Makes A Lab Blown Film Extrusion Machine Useful?

A lab blown film extrusion machine is useful for detecting the feasibility of film blowing of polymer materials, assessing the colloid condition in the materials, and evaluating the dispersion of colored dispersions and extrudates. It is essential for research and development in polymer processing.
View more faqs for this product

4.8

out of

5

The furnace is well-designed and stable, allowing for continuous operation with multiple furnaces heating up and cooling down separately.

Eleanor Buarque

4.9

out of

5

I am impressed with the excellent temperature uniformity throughout the furnace chamber, resulting in consistent and high-quality graphitization.

Sadie O'Farrell

4.6

out of

5

The digital flow monitoring system monitors and protects each water channel in the power cabinet, ensuring safe and efficient operation.

Rylan Patel

4.7

out of

5

The high-performance medium frequency contactor ensures reliable and efficient power conversion.

Ricardo Johnston

4.8

out of

5

The double-layer alumina brick insulation provides excellent heat insulation and fire resistance, minimizing heat loss and reducing energy consumption.

Ismail Mistry

4.9

out of

5

The PLC-based water, electricity, and gas control system provides comprehensive monitoring and protection, ensuring safe and efficient operation.

Evie Jensen

4.7

out of

5

The furnace's robust construction and high-performance components ensure stable and reliable operation, even under demanding conditions.

Martine Flores

4.6

out of

5

The furnace is easy to operate and maintain, which saves us time and resources.

Clayton Rice

4.8

out of

5

The furnace's unique design ensures excellent temperature uniformity throughout the furnace chamber, resulting in consistent and reliable results.

Sienna O'Neill

PDF - High Thermal Conductivity Film Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Tube Furnace

Download

Catalog of Muffle Furnace

Download

Catalog of Rubber Processing Machine

Download

Catalog of Atmosphere Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

Bottom lifting furnace

Bottom lifting furnace

Efficiently produce batches with excellent temperature uniformity using our Bottom Lifting Furnace. Features two electric lifting stages and advanced temperature control up to 1600℃.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

1700℃ Tube furnace with Alumina tube

1700℃ Tube furnace with Alumina tube

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

Multi heating zones CVD tube furnace CVD machine

Multi heating zones CVD tube furnace CVD machine

KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Slide PECVD tube furnace with liquid gasifier PECVD machine

Slide PECVD tube furnace with liquid gasifier PECVD machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

Lithium battery tab tape

Lithium battery tab tape

PI polyimide tape, generally brown, also known as gold finger tape, high temperature resistance 280 ℃, to prevent the influence of heat sealing of soft pack battery lug glue, suitable for soft pack battery tab position glue.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

1200℃ Muffle furnace

1200℃ Muffle furnace

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

Split chamber CVD tube furnace with vacuum station CVD machine

Split chamber CVD tube furnace with vacuum station CVD machine

Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.

Related Articles

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Discover how vacuum graphite furnaces revolutionize high-temperature material treatments with unmatched precision and efficiency. Explore customized solutions for various industries, advanced automation, and sustainable energy practices.

Find out more
Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Delve into the world of vacuum graphite furnaces, exploring their exceptional performance, diverse applications, and crucial considerations. Our expert insights empower you to make informed decisions for your laboratory's high-temperature material treatment needs.

Find out more
Enhancing Dental Work with a High-Quality Dental Furnace

Enhancing Dental Work with a High-Quality Dental Furnace

A dental furnace is a specialized piece of equipment used in dentistry to heat materials to high temperatures. It is typically used to manipulate metal alloys or ceramics, such as those used in crowns, bridges, and other restorative treatments.

Find out more
Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Unlock the potential of graphite vacuum furnaces for high-temperature material treatment. Learn about their efficiency, customization options, automation, and key considerations for graphite rod usage.

Find out more
The Role of a Porcelain Furnace in Dental Restorations

The Role of a Porcelain Furnace in Dental Restorations

Porcelain furnaces play a crucial role in the creation of dental restorations, as they are used to fire ceramic materials, such as porcelain, to create durable and natural-looking dental prosthetics.

Find out more
How to Maintain Your Dental Ceramic Furnace

How to Maintain Your Dental Ceramic Furnace

The dental furnaces are expensive and require regular maintenance to ensure they function properly and produce accurate results.

Find out more
The Importance of Inert Atmosphere Gases in Furnace Atmospheres

The Importance of Inert Atmosphere Gases in Furnace Atmospheres

Furnace atmospheres play an essential role in the heat treatment process of materials.

Find out more
Understanding Electric Heating Systems(1): How Electric Furnaces Work and Their Advantages

Understanding Electric Heating Systems(1): How Electric Furnaces Work and Their Advantages

Discover how electric heating systems, particularly electric furnaces, work efficiently without the need for flues or chimneys. Explore the benefits and components of electric furnaces, including heating elements, contactors, sequencers, and transformers.

Find out more
Melting process and maintenance of vacuum induction melting furnace

Melting process and maintenance of vacuum induction melting furnace

Melting process and maintenance of vacuum induction melting furnace

Find out more
Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Electric Rotary Kiln Pyrolysis Furnace: A Comprehensive Guide to Pyrolysis Technology

Discover the principles, applications, and advantages of electric rotary kiln pyrolysis furnaces. Explore various heating methods, factors affecting efficiency, and the environmental benefits of this technology.

Find out more
The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

The Advantages and Disadvantages of Different Biomass Feedstocks for Pyrolysis

Different feedstocks have their own unique advantages and disadvantages for pyrolysis, which must be carefully considered when selecting the most suitable feedstock for a particular application.

Find out more
Investigating the Factors Affecting the Slow Temperature Rise in Box Furnaces

Investigating the Factors Affecting the Slow Temperature Rise in Box Furnaces

Sometimes, the temperature of the furnace may not rise as quickly as expected, or may not be able to reach the desired temperature at all.

Find out more