Products Thermal Equipment Graphitization furnace Ultra-high temperature graphitization furnace
Ultra-high temperature graphitization furnace

Graphitization furnace

Ultra-high temperature graphitization furnace

Item Number : GF-09

Price varies based on specs and customizations


Specifications
Please refer to the chart below for detailed parameters.
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials. It comprises a furnace body, cover, heating sensor, insulation layer, electrode extraction device, water circulation distribution system, vacuum system, temperature control system, and more. The electrical system includes a 60KVA, IGBT transistor intermediate frequency power supply and water-cooled cable, equipped with various indicating instruments and alarm functions. The control part employs a 15-inch touch screen and programmable controller PLC.

Details & Part

Ultra-high temperature graphitization furnace details

Applications

The ultra-high temperature graphitization furnace finds applications in a wide range of industries, including:

  • Ceramic firing
  • Carbide growth
  • Carbonization
  • Graphitization
  • Sintering
  • Annealing
  • Brazing
  • Degassing

Features

The ultra-high temperature graphitization furnace offers a range of advanced features that provide significant benefits to users:

  • High temperature capability: The furnace can reach temperatures up to 2200°C, making it suitable for a wide range of high-temperature applications.
  • High efficiency: The graphite-based furnace is extremely efficient, resulting in lower energy consumption and faster heating times.
  • Uniform heating: The furnace's design ensures uniform heating throughout the chamber, providing consistent results.
  • Vacuum or inert gas environment: The furnace can be operated in a vacuum or inert gas environment, allowing for precise control of the atmosphere surrounding the workpiece.
  • Intelligent control system: The furnace is equipped with an advanced touch screen and programmable controller for precise temperature control and monitoring.
  • Safety features: The furnace includes audible and visual alarms for overvoltage, overcurrent, and water cutoff, ensuring safe operation.

Principle

Ultra-high temperature graphitization furnace operates based on the principle of medium frequency induction heating. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible. This generates high temperatures that radiate to the workpiece, bringing it to the desired temperature. This furnace is employed for graphitization and sintering of carbon materials, carbon fiber materials, and composite materials.

Advantages

  • High temperature: Ultra-high temperature graphitization furnace can reach a temperature of 2500°C, which is suitable for a variety of high temperature treatment and graphitization treatment applications.
  • High efficiency: The ultra-high temperature graphitization furnace uses the principle of medium frequency induction heating, which has the advantages of high efficiency and uniform heating.
  • Uniform heating: The ultra-high temperature graphitization furnace uses a graphite crucible to generate high temperature and radiates to the workpiece, which can achieve uniform heating of the workpiece.
  • Wide application: The ultra-high temperature graphitization furnace is suitable for graphitization and sintering of carbon materials, carbon fiber materials and other composite materials.
  • Easy to operate: The ultra-high temperature graphitization furnace is controlled by a 15-inch touch screen and programmable controller PLC, which is easy to operate.
  • Safe and reliable: The ultra-high temperature graphitization furnace has audible and visual alarm functions such as overvoltage, overcurrent, and water cutoff, which is safe and reliable.

Technical specification

Power supply capacity 60KVA
Power supply 4000~8000Hz (automatic tracking)
Temperature 3000℃
Temperature control accuracy ±2℃
Temperature measurement method 1100℃~3000℃
Effective working area size Φ200×200 mm (diameter×height)
Cold ultimate vacuum degree 133Pa
Pressure rise 3.0 Pa/h
Protective atmosphere Argon Nitrogen
Inflation pressure ≤ 0.03MPa
Material in and out method Top loading and discharging
Heating conditions Atmosphere sintering (inert gas)

FAQ

What is the working principle of an ultra-high temperature graphitization furnace?

The ultra-high temperature graphitization furnace uses the principle of medium frequency induction heating in a vacuum or inert gas environment. By causing the induction coil to generate an alternating magnetic field, the graphite crucible in the induction coil generates eddy currents to heat itself. The graphite crucible generates high temperature and radiates to the workpiece, bringing it to the required temperature.

What are the main components of an ultra-high temperature graphitization furnace?

The main components of an ultra-high temperature graphitization furnace include the furnace body, furnace cover, heating sensor, insulation layer, electrode extraction device, water circulation distribution system, vacuum system, and temperature control system.

How to maintain an ultra-high temperature graphitization furnace?

To ensure the normal operation and prolong the service life of the ultra-high temperature graphitization furnace, regular maintenance is necessary. The maintenance work mainly includes:- Cleaning the furnace body and furnace cover: Regularly clean the furnace body and furnace cover to remove dirt and dust.- Checking the insulation layer: Regularly check the insulation layer for damage and replace it if necessary.- Checking the heating element: Regularly check the heating element for damage and replace it if necessary.- Checking the temperature control system: Regularly check the temperature control system for accuracy and reliability.- Checking the vacuum system: Regularly check the vacuum system for leaks and repair them if necessary.
View more faqs for this product

4.8

out of

5

The furnace is very efficient and has uniform heating, which greatly improves our work efficiency.

Hanson Zhang

4.9

out of

5

The furnace is easy to operate and can be controlled by a touch screen, which is very convenient.

Sophia Mason

4.7

out of

5

The furnace is very safe and reliable, with audible and visual alarm functions, which gives me a sense of security.

Isabella Garcia

4.6

out of

5

The furnace has a wide range of applications and can be used for graphitization and sintering of various materials.

Liam Brown

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Mia Rodriguez

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Ethan Jones

4.7

out of

5

The delivery speed of the furnace is very fast, and it can be delivered to our laboratory in a short time.

Amelia Davis

4.6

out of

5

The furnace is very valuable for money, and its price is very reasonable.

Henry Smith

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Isabella Garcia

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Liam Brown

4.7

out of

5

The delivery speed of the furnace is very fast, and it can be delivered to our laboratory in a short time.

Mia Rodriguez

4.6

out of

5

The furnace is very valuable for money, and its price is very reasonable.

Ethan Jones

4.8

out of

5

The furnace is very efficient and has uniform heating, which greatly improves our work efficiency.

Amelia Davis

4.9

out of

5

The furnace is easy to operate and can be controlled by a touch screen, which is very convenient.

Henry Smith

4.7

out of

5

The furnace is very safe and reliable, with audible and visual alarm functions, which gives me a sense of security.

Sophia Mason

4.6

out of

5

The furnace has a wide range of applications and can be used for graphitization and sintering of various materials.

Hanson Zhang

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Isabella Garcia

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Liam Brown

PDF of GF-09

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Related Articles

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Discover how vacuum graphite furnaces revolutionize high-temperature material treatments with unmatched precision and efficiency. Explore customized solutions for various industries, advanced automation, and sustainable energy practices.

Find out more
Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Delve into the world of vacuum graphite furnaces, exploring their exceptional performance, diverse applications, and crucial considerations. Our expert insights empower you to make informed decisions for your laboratory's high-temperature material treatment needs.

Find out more
Enhancing Dental Work with a High-Quality Dental Furnace

Enhancing Dental Work with a High-Quality Dental Furnace

A dental furnace is a specialized piece of equipment used in dentistry to heat materials to high temperatures. It is typically used to manipulate metal alloys or ceramics, such as those used in crowns, bridges, and other restorative treatments.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Understanding the Design and Functionality of Industrial Furnaces

Understanding the Design and Functionality of Industrial Furnaces

Industrial furnaces are heating devices used in various industrial processes, including soldering, heat treatment of steels and alloys, and ceramics sintering.

Find out more
Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Discover the Vacuum Induction Melting Furnace, a specialized equipment that employs vacuum and induction heating to refine metals and alloys, ensuring high purity and precise composition control. Explore its principle, advantages, applications, and components in this comprehensive guide.

Find out more
Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

the ashing process involves heating a sample in the presence of oxygen to burn off organic compounds and leave behind the inorganic, non-combustible ash.

Find out more
Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Discover the intricacies of vacuum induction melting furnaces, their components, operation, advantages, and applications. Explore how these furnaces revolutionize metal processing and achieve exceptional material properties.

Find out more
How Biomass Pyrolysis Machines Work A Comprehensive Overview

How Biomass Pyrolysis Machines Work A Comprehensive Overview

Biomass pyrolysis machines are designed to convert biomass materials into useful products such as biochar, bio-oil, and syngas.

Find out more
What is activated carbon regeneration Rotary Furnace

What is activated carbon regeneration Rotary Furnace

Electric activated carbon regeneration furnace is one typical electric external heating rotary furnace

Find out more
Understanding Electric Heating Systems(一): How Electric Furnaces Work and Their Advantages

Understanding Electric Heating Systems(一): How Electric Furnaces Work and Their Advantages

Discover how electric heating systems, particularly electric furnaces, work efficiently without the need for flues or chimneys. Explore the benefits and components of electric furnaces, including heating elements, contactors, sequencers, and transformers.

Find out more
Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing(HIP ) is a technology used to densify materials at high temperatures and pressures. The process involves placing a material in a sealed container, which is then pressurized with an inert gas and heated to a high temperature.

Find out more