Products Thermal Equipment Graphitization furnace Ultra-high temperature graphitization furnace
Ultra-high temperature graphitization furnace

Graphitization furnace

Ultra-high temperature graphitization furnace

Item Number : GF-09

Price varies based on specs and customizations


Specifications
Please refer to the chart below for detailed parameters.
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials. It comprises a furnace body, cover, heating sensor, insulation layer, electrode extraction device, water circulation distribution system, vacuum system, temperature control system, and more. The electrical system includes a 60KVA, IGBT transistor intermediate frequency power supply and water-cooled cable, equipped with various indicating instruments and alarm functions. The control part employs a 15-inch touch screen and programmable controller PLC.

Details & Part

Ultra-high temperature graphitization furnace details

Applications

The ultra-high temperature graphitization furnace finds applications in a wide range of industries, including:

  • Ceramic firing
  • Carbide growth
  • Carbonization
  • Graphitization
  • Sintering
  • Annealing
  • Brazing
  • Degassing

Features

The ultra-high temperature graphitization furnace offers a range of advanced features that provide significant benefits to users:

  • High temperature capability: The furnace can reach temperatures up to 2200°C, making it suitable for a wide range of high-temperature applications.
  • High efficiency: The graphite-based furnace is extremely efficient, resulting in lower energy consumption and faster heating times.
  • Uniform heating: The furnace's design ensures uniform heating throughout the chamber, providing consistent results.
  • Vacuum or inert gas environment: The furnace can be operated in a vacuum or inert gas environment, allowing for precise control of the atmosphere surrounding the workpiece.
  • Intelligent control system: The furnace is equipped with an advanced touch screen and programmable controller for precise temperature control and monitoring.
  • Safety features: The furnace includes audible and visual alarms for overvoltage, overcurrent, and water cutoff, ensuring safe operation.

Principle

Ultra-high temperature graphitization furnace operates based on the principle of medium frequency induction heating. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible. This generates high temperatures that radiate to the workpiece, bringing it to the desired temperature. This furnace is employed for graphitization and sintering of carbon materials, carbon fiber materials, and composite materials.

Advantages

  • High temperature: Ultra-high temperature graphitization furnace can reach a temperature of 2500°C, which is suitable for a variety of high temperature treatment and graphitization treatment applications.
  • High efficiency: The ultra-high temperature graphitization furnace uses the principle of medium frequency induction heating, which has the advantages of high efficiency and uniform heating.
  • Uniform heating: The ultra-high temperature graphitization furnace uses a graphite crucible to generate high temperature and radiates to the workpiece, which can achieve uniform heating of the workpiece.
  • Wide application: The ultra-high temperature graphitization furnace is suitable for graphitization and sintering of carbon materials, carbon fiber materials and other composite materials.
  • Easy to operate: The ultra-high temperature graphitization furnace is controlled by a 15-inch touch screen and programmable controller PLC, which is easy to operate.
  • Safe and reliable: The ultra-high temperature graphitization furnace has audible and visual alarm functions such as overvoltage, overcurrent, and water cutoff, which is safe and reliable.

Technical specification

Power supply capacity 60KVA
Power supply 4000~8000Hz (automatic tracking)
Temperature 3000℃
Temperature control accuracy ±2℃
Temperature measurement method 1100℃~3000℃
Effective working area size Φ200×200 mm (diameter×height)
Cold ultimate vacuum degree 133Pa
Pressure rise 3.0 Pa/h
Protective atmosphere Argon Nitrogen
Inflation pressure ≤ 0.03MPa
Material in and out method Top loading and discharging
Heating conditions Atmosphere sintering (inert gas)

FAQ

What is a graphitization furnace?

A graphitization furnace is a specialized piece of equipment used to convert carbonaceous materials, such as petroleum coke or coal tar pitch, into graphite through high-temperature processing in an inert atmosphere. This process typically involves temperatures ranging from 2500 to 3000 degrees Celsius.

What is a tube furnace?

Laboratory tube furnace is one classic external heating high temperature tube furnace, also named hot wall heating furnace.

According to the different working temperature, furnace tube material usually can be transparent quartz tubes, high purity alumina ceramic tubes and high strength metal alloy tubes.

To meet different thermal researching purposes, tube furnace can be designed with multi heating zones, so as to have a flexible control of temperature gradient in the tube working chamber; furnace tube can work with a controlled atmosphere working environment or a high vacuum working environment.

What are muffle furnace used for?

Muffle furnaces are mainly used for high-temperature applications in industrial manufacturing and laboratory environments. They provide a controlled and insulated environment for heating materials, allowing precise temperature control. Muffle furnaces are ideal for ashing samples, heat-treating applications, and materials research. They are commonly used for melting glass, creating enamel coatings, technical ceramics, soldering, and brazing. Muffle furnaces use technology and design to achieve greater control of temperature uniformity and isolate heated materials from combustion contaminants.

What is the working principle of an ultra-high temperature graphitization furnace?

The ultra-high temperature graphitization furnace uses the principle of medium frequency induction heating in a vacuum or inert gas environment. By causing the induction coil to generate an alternating magnetic field, the graphite crucible in the induction coil generates eddy currents to heat itself. The graphite crucible generates high temperature and radiates to the workpiece, bringing it to the required temperature.

What are the main components of an ultra-high temperature graphitization furnace?

The main components of an ultra-high temperature graphitization furnace include the furnace body, furnace cover, heating sensor, insulation layer, electrode extraction device, water circulation distribution system, vacuum system, and temperature control system.

How to maintain an ultra-high temperature graphitization furnace?

To ensure the normal operation and prolong the service life of the ultra-high temperature graphitization furnace, regular maintenance is necessary. The maintenance work mainly includes:- Cleaning the furnace body and furnace cover: Regularly clean the furnace body and furnace cover to remove dirt and dust.- Checking the insulation layer: Regularly check the insulation layer for damage and replace it if necessary.- Checking the heating element: Regularly check the heating element for damage and replace it if necessary.- Checking the temperature control system: Regularly check the temperature control system for accuracy and reliability.- Checking the vacuum system: Regularly check the vacuum system for leaks and repair them if necessary.

What are the main applications of graphitization furnaces?

Graphitization furnaces are crucial in industries such as metallurgy, electronics, and aerospace. They produce high-quality graphite products like electrodes, crucibles, and structural components, which are essential for various high-temperature applications.

How does a vacuum induction melting furnace work?

A vacuum induction melting furnace works by utilizing electromagnetic induction under vacuum or protective atmosphere conditions to melt metals and alloys that combine easily or have close affinity with oxygen, nitrogen, and hydrogen. The furnace contains a refractory-lined crucible enclosed by an induction coil that generates an eddy current of heat in the material being processed. The furnace's vacuum system totally eradicates gases from the molten metals, and the cooling system contributes to the controlled melting temperature. The furnace is highly reliable, gives high productivity, and produces metals with very close compositional tolerances.

How does a tube furnace work?

Tube furnace heating elements are placed surrounding the cylindrical cavity, furnace can only heat the samples in the cylindrical cavity through indirect thermal radiation, since furnace tube can prevent sample material from contacting with furnace heating elements and insulation materials, so tube furnace creates a clean isolated heat chamber and reduce risks of the sample material contaminating by the furnace.

What are the types of muffle furnace?

Box furnace, tube furnace, crucible furnace, split furnace, vacuum furnace, and multi-zone furnace are some types of muffle furnaces. The choice of muffle furnace depends on the specific application and requirements of the user.

What is electric rotary kiln?

Electric rotary kiln is a type of rotary kiln that uses electricity as its heating source to indirectly heat materials in the kiln body. It is commonly used for high-temperature oxidation and reduction reactions, calcination of granular or powder materials, and other industrial applications. The temperature of the kiln can reach up to 1100℃, and it is widely used for the calcination and drying of various materials, including positive and negative electrode materials, rare earth materials, magnetic materials, and non-metallic mineral materials. Its advantages include high-speed electric heating, energy efficiency, and environmental friendliness.

What is a atmospheric furnace?

An atmospheric furnace is a type of laboratory equipment that provides a controlled environment for various procedures. It is designed to maintain a specific temperature and atmosphere, which is essential for completing tasks that require precision and accuracy. The furnace is sealed tightly to ensure the proper environment, and the mixture of gases used is precisely measured to achieve the desired results. This type of furnace is commonly used for bonding, curing, and heat treating of samples that are prone to oxidation in an inert atmosphere.

What is RF PECVD?

RF PECVD stands for radio-frequency plasma-enhanced chemical vapor deposition, which is a technique used to prepare polycrystalline films on a substrate by using glow discharge plasma to influence the process while low pressure chemical vapor deposition is taking place. The RF PECVD method is well established for standard silicon-integrated-circuit technology, where typically flat wafers are used as the substrates. This method is advantageous due to the possibility of low-cost film fabrication and high efficiency of deposition. Materials can also be deposited as graded-refractive-index films or as a stack of nano-films each with different properties.

What are the different types of graphitization furnaces?

There are several types of graphitization furnaces, including Horizontal High Temperature Graphitization Furnaces, Large Vertical Graphitization Furnaces, Continuous Graphitization Furnaces, Negative Material Graphitization Furnaces, Vertical High Temperature Graphitization Furnaces, Ultra-high Temperature Graphitization Furnaces, IGBT Experimental Graphitization Furnaces, High Thermal Conductivity Film Graphitization Furnaces, Bottom Discharge Graphitization Furnaces for Carbon Materials, and 2200°C Graphite Vacuum Furnaces.

What are the advantages of vacuum induction melting?

The advantages of vacuum induction melting (VIM) include the elimination of gases, superior process control, close control of chemical analysis, slag-free melting, and melt protection. VIM is currently the most energy-efficient, fastest, low-consumption, and environmentally friendly induction heating technology for heating metal materials. The technology offers exceptional and reproducible control of reactive element-containing compositions and eliminates the need for a protective slag cover, decreasing the potential for accidental contamination or inclusions in the ingot. The process takes place in a vacuum environment, making it beneficial to remove gas impurities inside the metal, resulting in a more pure metal alloy material.

What is the application for tube furnace?

Tubular furnace is mainly used in metallurgy, glass, heat treatment, lithium anode and cathode materials, new energy, abrasives and other industries, and is a professional equipment for measuring materials under certain temperature conditions.

Tube furnace features simple structure, easy operation, easy control and continuous production.

Tube furnace is also widely applied in the CVD (chemical vapor deposition) and plasma enhanced CVD systems.

What is muffle furnace in chemistry?

A muffle furnace is a type of oven equipment used in chemistry that can reach high temperatures and provides a controlled and insulated environment for heating materials, allowing precise temperature control. It separates the object to be heated from all byproducts of combustion from the heat source. Muffle furnaces are used in solid-state reactions, such as reducing metals or creating oxides, and for limiting oxygen exposure in materials. They are also used in high-temperature chemical vapor deposition processes and are ideal for ashing samples, heat-treating applications, and materials research.

How does a electric rotary kiln work?

An electric rotary kiln works by gradually heating materials, such as minerals and ores, to very high temperatures using electricity as its power source. The kiln consists of a body, discharging device, electric heating device, and control unit. The electric heating device heats the surrounding environment of the materials in the kiln, and the temperature is monitored by a thermocouple. The kiln body has a certain inclination angle, with the feed end at a higher position than the discharge end. As the material rotates with the furnace tube, it passes through various temperature zones before being discharged.

What is the use of atmosphere furnace?

An atmosphere furnace is used in laboratories to provide a controlled environment for various processes. The furnace allows for precise temperature and atmospheric control, which is critical for procedures that require exact temperatures. The furnace is sealed tightly to ensure the proper environment for the project. The atmosphere furnace's main component is the correct mixture of gases, which is essential to the success of the project. The atmosphere furnace plays a vital role in the success of the heat-treating process. It is used to protect the material being processed or to allow the surface of the material being processed to change.

How does RF PECVD work?

RF PECVD works by creating a plasma in a vacuum chamber. The precursor gas is introduced into the chamber, and radio frequency power is applied to create an electric field. This electric field results in the ionization of the precursor gas, forming a plasma. The plasma contains reactive species that can chemically react with the substrate surface, leading to the deposition of a thin film. The RF power also helps to control the energy of the plasma, allowing for better control over film properties such as composition, uniformity, and adhesion. The process parameters, such as gas flow rates, pressure, and RF power, can be adjusted to optimize the film deposition process.

How does a graphitization furnace work?

A graphitization furnace works by subjecting carbonaceous materials to extremely high temperatures, typically between 2500 to 3000 degrees Celsius, in an inert atmosphere. This process rearranges the carbon atoms in the material, converting it into graphite, which has unique properties such as high thermal conductivity, low thermal expansion, and chemical inertness.

How does vacuum help in induction melting furnace?

Vacuum conditions are critical in induction melting furnaces as they help to eliminate gases from the molten metals, preventing quick oxidation. The absence of gases during the melting process ensures the creation of very close compositional tolerances, resulting in consistent metals. The vacuum also provides a protective atmosphere for metals that combine easily or have a close affinity with oxygen, nitrogen and hydrogen. Vacuum induction melting furnaces use electromagnetic induction to melt metals and alloys in a refractory lined crucible enclosed by an induction coil, creating eddy currents that make the melting process possible.

How many different types tube furnace?

Tube furnace can work with different mechanical functions smoothly, so there are many different types tube furnace variations for different experiment purposes, typical furnace furnaces are as below:

  • Horizontal tube furnace
  • Vertical tube furnace
  • Split tube furnace
  • Rotary tube furnace
  • Tilting tube furnace
  • Sliding tube furnace
  • Fast heating and cooling tube furnace
  • Continuous feeding and discharging tube furnace

What is the use of muffle furnace for ash?

Muffle furnaces are commonly used for ashing samples, which involves heating materials to high temperatures to determine their percentage of ash content. This process is helpful in testing and treating materials in various industries such as cement making, foundry, and nuclear sectors. The standard muffle furnace is also used for manufacturing glass, ceramics, and other materials. Overall, muffle furnaces play a vital role in material testing and treatment at high temperatures, making them a crucial apparatus in many industries.

What are the advantages of electric rotary kiln?

The advantages of electric rotary kiln include high thermal efficiency, no smoke, ash, or slag, easy automatic control of conditions, high kiln temperature control accuracy, and avoidance of corrosion and environmental pollution problems. Electric rotary kilns use clean electricity and do not require fuel storage or transportation stations. They are suitable for narrow pre-firing temperature processes and can be used for various materials, including positive and negative electrode materials, rare earth materials, chemical catalytic materials, and non-metallic mineral materials. The electric rotary kilns by KinTek feature high-speed electric heating, intelligent PID thermal control technology, and excellent dynamic sealing technology for inert gas protection.

How does an atmosphere furnace work?

An atmosphere furnace works by heating materials or components in a controlled environment to achieve specific heat treatment or processing objectives. The furnace chamber is designed to accommodate the desired materials and can be sealed to maintain the selected atmosphere. The atmosphere is typically controlled by introducing specific gases or gas mixtures into the chamber, either continuously or intermittently, to create the desired environment. The furnace is equipped with heating elements, insulation, and temperature control systems to achieve and maintain the desired temperature. The materials or components are placed within the furnace chamber, and the furnace is heated to the desired temperature and held for the required duration to achieve the desired heat treatment or processing effect.

What are the advantages of RF PECVD?

RF PECVD offers several advantages for thin film deposition. Firstly, it allows for the deposition of high-quality films with excellent control over film properties such as thickness, composition, and uniformity. The use of a plasma enhances the reactivity of the process, enabling the deposition of films at lower temperatures compared to traditional thermal CVD methods. RF PECVD also offers better step coverage, allowing for the deposition of films in high aspect ratio structures. Another advantage is the ability to deposit a wide range of materials, including silicon nitride, silicon dioxide, amorphous silicon, and various other thin film materials. The process is highly scalable and can be easily integrated into existing manufacturing processes. Additionally, RF PECVD is a relatively cost-effective method compared to other thin film deposition techniques.

What are the advantages of using a graphitization furnace?

The advantages of using a graphitization furnace include the production of high-quality graphite with excellent thermal conductivity, low thermal expansion, and chemical inertness. These properties make graphite ideal for a wide range of high-temperature applications in industries like metallurgy, electronics, and aerospace.

What is vacuum induction melting furnace?

A vacuum induction melting furnace is a metallurgical furnace that uses an alternating electromagnetic field to melt and form various materials under vacuum or protective atmosphere. It is widely used in the vacuum metallurgy field and is essential for producing alloys and special steels used in the aerospace, electronics, and atomic energy industries. Vacuum induction melting furnaces are also used to improve the hot workability and mechanical properties of nickel, cobalt, and iron-based superalloys, as well as to melt stainless steel, heat-resistant steel, ultra-high strength steel, and various other materials to ensure their quality and performance.

What are the advantages of using a tube furnace?

Tube furnaces offer several advantages for high-temperature applications. Firstly, they provide precise and uniform temperature control, allowing for accurate and repeatable heating processes. This is crucial for materials research and heat treatment applications where temperature consistency is essential. Secondly, tube furnaces have a compact design, making them suitable for use in limited laboratory or industrial spaces. They are also versatile and can accommodate a wide range of sample sizes and shapes. Additionally, tube furnaces are energy-efficient, as they typically have good insulation and can reach high temperatures quickly. Some models also offer programmable temperature profiles, allowing for automated heating and cooling cycles. Overall, tube furnaces enable efficient and controlled high-temperature processes in various scientific and industrial fields.

What is the temperature of muffle furnace?

The temperature range of a muffle furnace is between 800°C to 1800°C, with a maximum temperature of 1473 K (1200°C; 2192°F). It is crucial to choose a furnace that will reach the desired temperature for your applications. Muffle furnaces are commonly used in metallurgy, glassmaking, ceramics, and other industries that require materials to be melted or heated to high temperatures. It usually takes approximately an hour for a muffle furnace to reach maximum temperature.

what can electric rotary kiln be used for?

Electric rotary kiln, also known as rotary kiln electric furnace, is used for high-temperature oxidation and reduction reactions, and for calcining granular or powder materials. It is widely used in industries such as rare earth materials, nonferrous metal materials, chemical catalytic materials, powder metallurgy materials, and kaolin non-metallic mineral materials.

What are the advantages of using atmosphere furnaces?

Atmosphere furnaces offer several advantages for heat treatment and processing applications. The controlled atmosphere within the furnace allows for precise control over the material's surface chemistry and microstructure, resulting in improved mechanical properties or desired surface characteristics. The ability to create specific atmospheres, such as oxidizing, reducing, or inert, provides flexibility in achieving different heat treatment objectives. Atmosphere furnaces enable the processing of a wide range of materials, including metals, alloys, ceramics, and composites, allowing for diverse applications across various industries. The controlled environment within the furnace also helps prevent oxidation or decarburization of the materials during heating, ensuring consistent and reliable results. Additionally, atmosphere furnaces can be equipped with advanced temperature control and automation systems, enhancing process repeatability, efficiency, and productivity.

What safety precautions should be taken when using a tube furnace?

When using a tube furnace, it is important to follow safety precautions to prevent accidents and ensure operator and sample safety. Firstly, proper training should be provided to personnel operating the furnace to ensure they understand its operation, safety features, and emergency procedures. Secondly, appropriate personal protective equipment (PPE), such as heat-resistant gloves, goggles, and lab coats, should be worn to protect against burns and potential hazards. Thirdly, it is crucial to properly load the sample or material inside the furnace, ensuring it is securely positioned and does not obstruct airflow. Adequate ventilation should be provided to remove any potential gases or fumes generated during heating. It is also important to regularly inspect and maintain the furnace, including checking the heating elements and electrical connections, to ensure safe and reliable operation.

What factors should be considered when selecting an atmosphere furnace?

Several factors should be considered when selecting an atmosphere furnace. The desired temperature range and heating rate capability of the furnace should match the requirements of the heat treatment or processing application. The furnace size and capacity should be suitable for the size and quantity of materials or components to be processed. The control and monitoring features, such as temperature control accuracy, gas flow control, and data logging capabilities, should be evaluated to ensure precise and reliable operation. The compatibility of the furnace design with the desired atmosphere and gas handling requirements should also be taken into account. Other factors to consider include safety features, maintenance requirements, and cost. It is advisable to consult with furnace manufacturers or industry experts to select the most suitable atmosphere furnace for specific application needs.
View more faqs for this product

4.8

out of

5

The furnace is very efficient and has uniform heating, which greatly improves our work efficiency.

Hanson Zhang

4.9

out of

5

The furnace is easy to operate and can be controlled by a touch screen, which is very convenient.

Sophia Mason

4.7

out of

5

The furnace is very safe and reliable, with audible and visual alarm functions, which gives me a sense of security.

Isabella Garcia

4.6

out of

5

The furnace has a wide range of applications and can be used for graphitization and sintering of various materials.

Liam Brown

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Mia Rodriguez

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Ethan Jones

4.7

out of

5

The delivery speed of the furnace is very fast, and it can be delivered to our laboratory in a short time.

Amelia Davis

4.6

out of

5

The furnace is very valuable for money, and its price is very reasonable.

Henry Smith

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Isabella Garcia

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Liam Brown

4.7

out of

5

The delivery speed of the furnace is very fast, and it can be delivered to our laboratory in a short time.

Mia Rodriguez

4.6

out of

5

The furnace is very valuable for money, and its price is very reasonable.

Ethan Jones

4.8

out of

5

The furnace is very efficient and has uniform heating, which greatly improves our work efficiency.

Amelia Davis

4.9

out of

5

The furnace is easy to operate and can be controlled by a touch screen, which is very convenient.

Henry Smith

4.7

out of

5

The furnace is very safe and reliable, with audible and visual alarm functions, which gives me a sense of security.

Sophia Mason

4.6

out of

5

The furnace has a wide range of applications and can be used for graphitization and sintering of various materials.

Hanson Zhang

4.8

out of

5

The furnace is very durable and has a long service life, which saves us a lot of maintenance costs.

Isabella Garcia

4.9

out of

5

The furnace is very economical and has a high cost performance, which is very suitable for our laboratory.

Liam Brown

PDF - Ultra-high temperature graphitization furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Graphitization Furnace

Download

Catalog of Vacuum Induction Melting Furnace

Download

Catalog of Tube Furnace

Download

Catalog of Muffle Furnace

Download

Catalog of Electric Rotary Kiln

Download

Catalog of Atmosphere Furnace

Download

Catalog of Rf Pecvd

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Horizontal high temperature graphitization furnace

Horizontal high temperature graphitization furnace

Horizontal Graphitization Furnace: This type of furnace is designed with the heating elements placed horizontally, allowing for uniform heating of the sample. It's well-suited for graphitizing large or bulky samples that require precise temperature control and uniformity.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

1400℃ Muffle furnace

1400℃ Muffle furnace

Get precise high-temperature control up to 1500℃ with KT-14M Muffle furnace. Equipped with a smart touch screen controller and advanced insulation materials.

1400℃ Controlled atmosphere furnace

1400℃ Controlled atmosphere furnace

Achieve precise heat treatment with KT-14A controlled atmosphere furnace. Vacuum sealed with a smart controller, it's ideal for lab and industrial use up to 1400℃.

Bottom discharge graphitization furnace for carbon materials

Bottom discharge graphitization furnace for carbon materials

Bottom-out graphitization furnace for carbon materials, ultra-high temperature furnace up to 3100°C, suitable for graphitization and sintering of carbon rods and carbon blocks. Vertical design, bottom discharging, convenient feeding and discharging, high temperature uniformity, low energy consumption, good stability, hydraulic lifting system, convenient loading and unloading.

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace

IGBT experimental graphitization furnace, a tailored solution for universities and research institutions, with high heating efficiency, user-friendliness, and precise temperature control.

1200℃ Muffle furnace

1200℃ Muffle furnace

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

Negative Material Graphitization Furnace

Negative Material Graphitization Furnace

Graphitization furnace for battery production has uniform temperature and low energy consumption. Graphitization furnace for negative electrode materials: an efficient graphitization solution for battery production and advanced functions to enhance battery performance.

1200℃ Controlled atmosphere furnace

1200℃ Controlled atmosphere furnace

Discover our KT-12A Pro Controlled atmosphere furnace - high precision, heavy duty vacuum chamber, versatile smart touch screen controller, and excellent temperature uniformity up to 1200C. Ideal for both laboratory and industrial application.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

1700℃ Controlled atmosphere furnace

1700℃ Controlled atmosphere furnace

KT-17A Controlled atmosphere furnace: 1700℃ heating, vacuum sealing technology, PID temperature control, and versatile TFT smart touch screen controller for laboratory and industrial use.

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

1700℃ Tube furnace with Alumina tube

1700℃ Tube furnace with Alumina tube

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

Multi zone tube furnace

Multi zone tube furnace

Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Related Articles

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Discover how vacuum graphite furnaces revolutionize high-temperature material treatments with unmatched precision and efficiency. Explore customized solutions for various industries, advanced automation, and sustainable energy practices.

Find out more
Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Unveiling Vacuum Graphite Furnaces: Performance, Applications, and Expert Insights

Delve into the world of vacuum graphite furnaces, exploring their exceptional performance, diverse applications, and crucial considerations. Our expert insights empower you to make informed decisions for your laboratory's high-temperature material treatment needs.

Find out more
Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Optimizing Performance with Graphite Vacuum Furnaces: A Comprehensive Guide

Unlock the potential of graphite vacuum furnaces for high-temperature material treatment. Learn about their efficiency, customization options, automation, and key considerations for graphite rod usage.

Find out more
Enhancing Dental Work with a High-Quality Dental Furnace

Enhancing Dental Work with a High-Quality Dental Furnace

A dental furnace is a specialized piece of equipment used in dentistry to heat materials to high temperatures. It is typically used to manipulate metal alloys or ceramics, such as those used in crowns, bridges, and other restorative treatments.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Understanding the Design and Functionality of Industrial Furnaces

Understanding the Design and Functionality of Industrial Furnaces

Industrial furnaces are heating devices used in various industrial processes, including soldering, heat treatment of steels and alloys, and ceramics sintering.

Find out more
Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Discover the Vacuum Induction Melting Furnace, a specialized equipment that employs vacuum and induction heating to refine metals and alloys, ensuring high purity and precise composition control. Explore its principle, advantages, applications, and components in this comprehensive guide.

Find out more
Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

Exploring the Ashing Process and Ashing Furnace: A Comprehensive Guide

the ashing process involves heating a sample in the presence of oxygen to burn off organic compounds and leave behind the inorganic, non-combustible ash.

Find out more
Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Discover the intricacies of vacuum induction melting furnaces, their components, operation, advantages, and applications. Explore how these furnaces revolutionize metal processing and achieve exceptional material properties.

Find out more
How Biomass Pyrolysis Machines Work A Comprehensive Overview

How Biomass Pyrolysis Machines Work A Comprehensive Overview

Biomass pyrolysis machines are designed to convert biomass materials into useful products such as biochar, bio-oil, and syngas.

Find out more
What is activated carbon regeneration Rotary Furnace

What is activated carbon regeneration Rotary Furnace

Electric activated carbon regeneration furnace is one typical electric external heating rotary furnace

Find out more
Understanding Electric Heating Systems(1): How Electric Furnaces Work and Their Advantages

Understanding Electric Heating Systems(1): How Electric Furnaces Work and Their Advantages

Discover how electric heating systems, particularly electric furnaces, work efficiently without the need for flues or chimneys. Explore the benefits and components of electric furnaces, including heating elements, contactors, sequencers, and transformers.

Find out more