Thematics Dental Furnace

dental furnace

A dental furnace is a laboratory equipment used in the dental industry to process ceramic dental restorations such as crowns, bridges, inlays, and onlays. It is designed to fuse and glaze porcelains at high temperatures and pressures, resulting in a hardened and final state. There are several types of dental furnaces available, including ceramic combination furnaces, sintering furnaces, and glazing furnaces. When selecting a dental furnace, it is important to choose one that is capable of processing the materials used in your practice, easy to clean, and properly maintained.


We offer the best solutions for your dental furnace needs. Our extensive portfolio ensures that there is an appropriate standard solution that will meet your requirements. For more unique applications, our bespoke design service allows us to meet almost any customer requirement. Our dental furnaces are easy to load and remove samples with an electrically driven elevator hearth and uniform heating can be obtained through element placement. With PLC programming, all parameters are controlled and operated. Ensure that the furnace you purchase can handle the materials you use and is easy to clean and maintain.

Applications of Dental Furnace

  • Sintering translucent zirconia and dental ceramics.
  • Changing physical properties of dental samples at high temperatures.
  • Processing ceramic dental restorations such as crowns, bridges, inlays, and onlays.
  • Hardening ceramic material into a final state.
  • Setting certain stains and glazes that add final shade details to a restoration.
  • Processing conventional ceramics.
  • Operating under the pressure necessary to work with pressable ceramics.
  • Reaching extreme temperatures required to process zirconia after milling.

Advantages of Dental Furnace

  • Easy loading and removal of samples such as molten glass, dental zirconia, and other materials.
  • Uniform heating can be obtained by placing elements in the entire chamber's sidewalls, allowing for easy control and operation of all parameters, with the help of PLC programming.
  • Dental furnaces can handle various materials employed in dental labs and practices, such as porcelain-fused-to-metal crowns, inlays, onlays, bridges, and others.
  • Dental furnaces are simple to clean and well-maintained in between uses, ensuring that they remain durable and long-lasting.
  • Dental furnaces offer high-temperature durability, which is necessary for the entire process, ensuring that the parts can handle high temperatures for an extended period.
  • The best dental furnace is easy to operate, offering a lot of features but remaining easy to use, with an easy mode of operation that doesn't require additional training.
  • Low maintenance is required for dental furnaces, ensuring proper functionality at all times, without complex maintenance. 

Our Dental Furnace is an affordable solution that is customized to meet your specific requirements. Our wide range of products provides you with standard solutions that can fit your needs. Additionally, our custom design service enables us to cater to your unique applications. The furnace allows for easy loading and removal of samples like molten glass and dental zirconia. With the help of PLC programming, all the parameters are controlled and operated.

FAQ

What Is Dental Furnaces?

A dental furnace, also known as a dental oven, is a piece of equipment used in the production of ceramic dental restorations such as crowns, bridges, inlays, and onlays. The furnace can reach high temperatures and pressures to process ceramic material into a hardened, final state. There are different types of dental furnaces, including ceramic combination furnaces, sintering furnaces, and glazing furnaces. Modern dental furnaces are microprocessor controlled, providing the benefit of programmability and a memory system that can remember up to 200 different programs, all of which can be executed precisely by the user.

What Are The Different Types Of Dental Furnaces?

The different types of dental furnaces include ceramic furnaces, ceramic combination furnaces, sintering furnaces, and glazing furnaces. Ceramic furnaces process conventional ceramics, ceramic combination furnaces add the ability to operate under the pressure necessary to work with pressable ceramics, sintering furnaces are capable of reaching extreme temperatures required to process zirconia, and glazing furnaces are used for setting certain stains and glazes. When selecting a dental furnace, it is important to choose one that is capable of processing the materials used in the practice or lab, is easy to clean, and is properly maintained.

What Is The Temperature Of A Dental Furnace?

The temperature of a dental furnace typically ranges between 600°C and 1600°C. The firing result obtained is influenced by the accuracy of the actual temperature. Different dental furnaces can have identical digital external displays, yet different results regarding the degree of firing can be identified when processing the same ceramics under otherwise similar conditions. The International Standard levels the currently existing differences between the final calibration of the dental furnaces based on the factory of origin through a final adjustment of the temperature control in the firing chamber by means of a thermocouple at e.g. 800°C.

What Is The Use Of Porcelain Furnace?

A porcelain furnace is used in dentistry to create dental porcelain, which is an unglazed ceramic material used for dental restorations such as crowns and veneers. The furnace heats the ceramic material until it is soft enough to shape, and then it is cooled and polished to create the desired tooth pattern. There are two main types of dental porcelain furnace systems: direct-fired or cold-press fired, and hot-pressed or heat-fused fired. Direct-fired technology uses an external source to directly fire the ceramic material, making it more cost-effective than indirect-fired technologies.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Hidden Enemy in Your Furnace: Why Your Heat-Treated Parts Have Scale and Discoloration—And How to Fix It for Good

The Hidden Enemy in Your Furnace: Why Your Heat-Treated Parts Have Scale and Discoloration—And How to Fix It for Good

Frustrated with oxidized, inconsistent results from your furnace? Discover why air, not heat, is the real culprit and how to solve it permanently.

Read more
The Architecture of Nothingness: Mastering Heat in a Vacuum

The Architecture of Nothingness: Mastering Heat in a Vacuum

Heat transforms materials, but air corrupts them. Discover how vacuum furnaces utilize low-pressure environments to ensure purity in brazing and sintering.

Read more
The Architecture of Heat: Aligning Engineering Precision with Laboratory Reality

The Architecture of Heat: Aligning Engineering Precision with Laboratory Reality

Choosing a tube furnace is not about finding the "best" model, but matching specifications—temperature, zones, and atmosphere—to your scientific reality.

Read more
Why Your High-Temperature Processes Fail: The Hidden Enemy in Your Vacuum Furnace

Why Your High-Temperature Processes Fail: The Hidden Enemy in Your Vacuum Furnace

Frustrated by inconsistent vacuum furnace results? Discover the real cause of failures and how to fix it by ensuring true vacuum integrity.

Read more
Inconsistent Melts? The Problem Isn't Your Furnace, It's the Physics.

Inconsistent Melts? The Problem Isn't Your Furnace, It's the Physics.

Struggling with inconsistent alloy quality and high costs? Discover the hidden reason and learn how to choose the right furnace for perfect results.

Read more
The Art of Nothingness: Vacuum, Inert Gas, and the Pursuit of Purity

The Art of Nothingness: Vacuum, Inert Gas, and the Pursuit of Purity

Vacuum vs. inert gas furnaces: Understand the trade-offs between absolute purity and cost-effective protection in laboratory heat treatment.

Read more
The Inverted Cup: When Physics Hides a Lethal Trap in Vacuum Furnaces

The Inverted Cup: When Physics Hides a Lethal Trap in Vacuum Furnaces

Hot argon behaves counter-intuitively in bottom-loading furnaces. Discover the physics of the "inverted cup" effect and how to prevent silent asphyxiation.

Read more
Your Induction Furnace Is Failing You. The Reason Isn't What You Think.

Your Induction Furnace Is Failing You. The Reason Isn't What You Think.

Struggling with inconsistent melts or high costs? The problem may be a fundamental mismatch in your induction furnace type. Learn to fix it.

Read more
The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

Discover how double-layer water-bath electrolytic cells eliminate thermal variables, ensuring accuracy and reproducibility in electrochemical research.

Read more
Why Your Ceramic Furnace Tubes Keep Cracking—And How to Choose the Right One

Why Your Ceramic Furnace Tubes Keep Cracking—And How to Choose the Right One

Tired of failed experiments from cracked ceramic tubes? Learn the real reason it happens and how to select the correct material (Alumina, Quartz) for your lab.

Read more
Furnace Contamination: The Hidden Saboteur Ruining Your High-Value Parts

Furnace Contamination: The Hidden Saboteur Ruining Your High-Value Parts

Discover why your heat-treating process fails on high-value parts. The issue isn't your settings—it's hidden furnace contamination. Learn the fix.

Read more
AI completes muffle furnace scientific research graphing in one minute.

AI completes muffle furnace scientific research graphing in one minute.

How to use nano banana to create scientific illustrations

Read more
Water Circulating Vacuum Pumps: A Practical Guide for Laboratory Applications

Water Circulating Vacuum Pumps: A Practical Guide for Laboratory Applications

Discover the benefits of water circulating vacuum pumps for labs: chemical safety, low maintenance, and explosion-proof operation. Ideal for sensitive applications.

Read more
How Vacuum Induction Melting Prevents Catastrophic Material Failures in Critical Components

How Vacuum Induction Melting Prevents Catastrophic Material Failures in Critical Components

Discover how Vacuum Induction Melting (VIM) prevents material failures in aerospace, nuclear, and EV components by eliminating atomic-level contamination.

Read more
How Vacuum Induction Melting Elevates High-Performance Alloy Production

How Vacuum Induction Melting Elevates High-Performance Alloy Production

Discover how Vacuum Induction Melting (VIM) enhances alloy purity, reduces defects, and optimizes costs for aerospace and energy sectors.

Read more
How Freeze-Drying Cuts Transport Costs by 90% in Critical Logistics

How Freeze-Drying Cuts Transport Costs by 90% in Critical Logistics

Freeze-drying slashes transport costs by 90% in logistics for space, military, and disaster relief by reducing weight and volume. Learn how it works.

Read more
Why Freeze-Drying is Indispensable for Preserving Sensitive Samples

Why Freeze-Drying is Indispensable for Preserving Sensitive Samples

Freeze-drying preserves sensitive samples by sublimation, maintaining molecular integrity and enabling stable, room-temperature storage. Essential for proteins, vaccines, and volatile compounds.

Read more
How Freeze-Drying Protects Delicate Biological Structures During Water Removal

How Freeze-Drying Protects Delicate Biological Structures During Water Removal

Freeze-drying preserves biological samples by removing water without structural damage, ideal for vaccines, enzymes, and microbial cultures. Learn how it works.

Read more
New Rapid Sintering Technologies for Advanced Ceramics

New Rapid Sintering Technologies for Advanced Ceramics

Explores advanced ceramic materials, their properties, and various rapid sintering techniques to enhance their performance.

Read more
Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Strategies to prevent sample bonding during sintering in aluminum oxide crucibles.

Read more