CVD & PECVD Furnace
Slide PECVD tube furnace with liquid gasifier PECVD machine
Item Number : KT-PE12
Price varies based on specs and customizations
- Max. temperature
- 1200 ℃
- Constant work temperature
- 1100 ℃
- Furnace tube diameter
- 60 mm
- Heating zone length
- 1x450 mm
- Heating rate
- 0-20 ℃/min
- Sliding distance
- 600mm
Shipping:
Contact us to get shipping details Enjoy On-time Dispatch Guarantee.
Introduction
The Slide PECVD Tube Furnace With Liquid Gasifier PECVD Machine is a versatile and high-performance system designed for a wide range of thin film deposition applications. It features a 500W RF plasma source, slide-out furnace, precise gas flow control, and a vacuum station. The system offers advantages such as automatic plasma matching, high-speed heating and cooling, programmable temperature control, and a user-friendly interface. It is widely used in research and production environments for depositing thin films in various industries, including electronics, semiconductors, and optics.
Applications
Slide PECVD Tube Furnace With Liquid Gasifier PECVD Machine finds its applications in:
- Chemical Vapor Deposition (CVD)
- Plasma Enhanced Chemical Vapor Deposition (PECVD)
- Thin film deposition
- Solar cell fabrication
- Semiconductor processing
- Nanotechnology
- Materials science
- Research and development
Different temperature and setup CVD systems available
Principle
The Slide PECVD Tube Furnace With Liquid Gasifier PECVD Machine employs low-temperature plasma to generate a glow discharge in the process chamber's cathode (sample tray). The glow discharge (or another heat source) raises the sample's temperature to a predetermined level. Then, controlled amounts of process gas are introduced, undergoing chemical and plasma reactions to form a solid film on the sample's surface.
Features
The Slide PECVD Tube Furnace With Liquid Gasifier PECVD Machine offers numerous benefits to users:
- Enhanced power generation for solar cell wafers: The innovative graphite boat structure significantly improves the power output of solar cells.
- Elimination of color difference in tubular PECVD cells: This equipment effectively addresses the issue of color variation in tubular PECVD cells.
- Wide output power range (5-500W): The RF plasma automatic matching source provides a versatile range of output power, ensuring optimal performance for various applications.
- High-speed heating and cooling: The furnace chamber sliding system enables rapid heating and cooling, reducing processing time. Auxiliary forced air circulation further accelerates the cooling rate.
- Automated sliding movement: The optional sliding movement feature allows for automatic operation, enhancing efficiency and reducing manual intervention.
- Precise temperature control: PID programmable temperature control ensures accurate temperature regulation, supporting remote and centralized control for added convenience.
- High-accuracy MFC mass flowmeter control: The MFC mass flowmeter precisely controls source gases, ensuring a stable and consistent gas supply.
- Versatile vacuum station: The stainless steel vacuum flange with multiple adapting ports accommodates various vacuum pump station configurations, ensuring a high vacuum degree.
- User-friendly interface: The CTF Pro 7-inch TFT touch screen controller simplifies program setting and allows for easy analysis of historical data.
Advantages
- RF plasma automatic matching source, wide 5-500W output power range stable output
- Furnace chamber sliding system for high speed heating and short time cooling, auxiliary fast cooling and automatic sliding movement are available
- PID programmable temperature control,excellent control accuracy and support remote control and centralized control
- High accuracy MFC mass flowmeter control, source gases premixing and stable gas supply speed
- Stainless steel vacuum flange with various adapting port to meet different vacuum pump station setup, good sealing and high vacuum degree
- CTF Pro applies one 7 inches TFT touch screen controller, more friendly program setting and history data analysis
Safety Advantage
- Kindle Tech tube furnace owns over current protection and over temperature alarming function, furnace will turn off the power automatically
- Furnace build in thermal couple detecting function, furnace will stop heating and alarm will be on once broken or failure detected
- PE Pro support power failure restarting function,furnace will resume the furnace heating program when power is incoming after failure
Technical specifications
Furnace model | KT-PE12-60 |
Max. temperature | 1200℃ |
Constant work temperature | 1100℃ |
Furnace tube material | High purity quartz |
Furnace tube diameter | 60mm |
Heating zone length | 1x450mm |
Chamber material | Japan alumina fiber |
Heating element | Cr2Al2Mo2 wire coil |
Heating rate | 0-20℃/min |
Thermal couple | Build in K type |
Temperature controller | Digital PID controller/Touch screen PID controller |
Temperature control accuracy | ±1℃ |
Sliding distance | 600mm |
RF Plasma unit | |
Output Power | 5 -500W adjustable with ± 1% stability |
RF frequency | 13.56 MHz ±0.005% stability |
Reflection Power | 350W max. |
Matching | Automatic |
Noise | <50 dB |
Cooling | Air cooling. |
Gas precise control unit | |
Flow meter | MFC mass flow meter |
Gas channels | 4 channels |
Flow rate | MFC1: 0-5SCCM O2 MFC2: 0-20SCMCH4 MFC3: 0- 100SCCM H2 MFC4: 0-500 SCCM N2 |
Linearity | ±0.5% F.S. |
Repeatability | ±0.2% F.S. |
Pipe line and valve | Stainless steel |
Maximum Operating Pressure | 0.45MPa |
Flow meter controller | Digital Knob controller/Touch screen controller |
Standard vacuum unit(Optional) | |
Vacuum pump | Rotary vane vacuum pump |
Pump flow rate | 4L/S |
Vacuum suction port | KF25 |
Vacuum gauge | Pirani/Resistance silicon vacuum gauge |
Rated vacuum pressure | 10Pa |
High vacuum unit(Optional) | |
Vacuum pump | Rotary vane pump+Molecular pump |
Pump flow rate | 4L/S+110L/S |
Vacuum suction port | KF25 |
Vacuum gauge | Compound vacuum gauge |
Rated vacuum pressure | 6x10-5Pa |
Above specifications and setups can be customized |
Standard Package
No. | Description | Quantity |
1 | Furnace | 1 |
2 | Quartz tube | 1 |
3 | Vacuum flange | 2 |
4 | Tube thermal block | 2 |
5 | Tube thermal block hook | 1 |
6 | Heat resistant glove | 1 |
7 | RF plasma source | 1 |
8 | Precise gas control | 1 |
9 | Vacuum unit | 1 |
10 | Operation manual | 1 |
Optional Setup
- In tube gases detecting and monitoring,like H2, O2 and so on
- Independent furnace temperature monitoring and recording
- RS 485 communication port for PC remote control and data exporting
- Insert gases feeding flow rate control,like mass flowmeter and float flowmeter
- Touch screen temperature controller with versatile operator friendly functions
- High vacuum pump station setups, like vane vacuum pump,molecular pump,diffusion pump
Warnings
Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.
Designed for You
KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!
Would you please drop your ideas to us, our engineers are ready for you now!
FAQ
What Is Physical Vapor Deposition (PVD)?
What Is PECVD Method?
What Is Magnetron Sputtering?
What Is PECVD Used For?
Why Magnetron Sputtering?
What Are The Advantages Of PECVD?
What Are The Materials Used In Thin Film Deposition?
Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.
The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.
What Is The Difference Between ALD And PECVD?
What Are The Methods To Achieve Optimal Thin Film Deposition?
To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.
The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.
To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.
Uses Of Thin Film Deposition
Zinc Oxide-Based Thin Films
ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.
Thin-Film Resistors
Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.
Magnetic Thin Films
Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.
Optical Thin Films
Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.
Polymer Thin Films
Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.
Thin-Film Batteries
Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.
Thin-Film Coatings
Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.
Thin-Film Solar Cells
Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.
What Is The Difference Between PECVD And Sputtering?
Factors And Parameters That Influence Deposition Of Thin Films
Deposition Rate:
The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.
Uniformity:
The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.
Fill Capability:
Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.
Film Characteristics:
The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.
Process Temperature:
Film characteristics are significantly affected by process temperature, which may be limited by the application.
Damage:
Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.
4.9
out of
5
I'm amazed by the quick delivery and the quality of the product. It's a game-changer for our lab.
4.8
out of
5
The Slide PECVD tube furnace has exceeded our expectations. It's a valuable addition to our research facility.
4.7
out of
5
This PECVD machine is a lifesaver! It has helped us achieve remarkable results in our research.
4.9
out of
5
The durability of this product is exceptional. It has withstood rigorous use in our lab.
4.8
out of
5
The technological advancements in this PECVD system have revolutionized our research capabilities.
4.7
out of
5
I highly recommend this product. It's worth every penny and has enhanced our research efficiency.
4.9
out of
5
The Slide PECVD tube furnace is a fantastic investment. It has accelerated our research progress significantly.
4.8
out of
5
This PECVD system is user-friendly and has simplified our research procedures.
4.7
out of
5
The technical support provided by KINTEK SOLUTION is outstanding. They're always ready to assist us.
4.9
out of
5
The Slide PECVD tube furnace has revolutionized our research methodology. It's a must-have for any lab.
4.8
out of
5
This PECVD machine is a game-changer. It has enabled us to achieve groundbreaking results in our research.
PDF - Slide PECVD tube furnace with liquid gasifier PECVD machine
disabled = false, 3000)"> DownloadCatalog of Cvd & Pecvd Furnace
disabled = false, 3000)"> DownloadCatalog of Pecvd Machine
disabled = false, 3000)"> DownloadCatalog of Thin Film Deposition Materials
disabled = false, 3000)"> DownloadREQUEST A QUOTE
Our professional team will reply to you within one business day. Please feel free to contact us!
Related Products
Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine
Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.
Customer made versatile CVD tube furnace CVD machine
Get your exclusive CVD furnace with KT-CTF16 Customer Made Versatile Furnace. Customizable sliding, rotating, and tilting functions for precise reactions. Order now!
Split chamber CVD tube furnace with vacuum station CVD machine
Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.
Multi heating zones CVD tube furnace CVD machine
KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.
Elevate your experiments with our Vertical Tube Furnace. Versatile design allows for operation under various environments and heat treatment applications. Order now for precise results!
Plasma enhanced evaporation deposition PECVD coating machine
Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.
1400℃ Tube furnace with Alumina tube
Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.
Horizontal Autoclave Steam Sterilizer (Microcomputer)
The horizontal autoclave steam sterilizer adopts the method of gravity displacement to remove the cold air in the inner chamber, so that the content of steam cold air in the inner chamber is less, and the sterilization is more reliable.
1700℃ Tube furnace with Alumina tube
Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.
Spark plasma sintering furnace SPS furnace
Discover the benefits of Spark Plasma Sintering Furnaces for rapid, low-temperature material preparation. Uniform heating, low cost & eco-friendly.
12 inch/24 inch high precision automatic diamond wire cutting machine
The high precision automatic diamond wire cutting machine is a versatile cutting tool that uses a diamond wire to cut through a wide range of materials, including conductive and non-conductive materials, ceramics, glass, rocks, gems, jade, meteorites, monocrystalline silicon, silicon carbide, polycrystalline silicon, refractory bricks, epoxy boards, and ferrite bodies. It is especially suitable for cutting various brittle crystals with high hardness, high value, and easy to break.
Vacuum sealed continuous working rotary tube furnace
Experience efficient material processing with our vacuum-sealed rotary tube furnace. Perfect for experiments or industrial production, equipped with optional features for controlled feeding and optimized results. Order now.
RF PECVD System Radio Frequency Plasma-Enhanced Chemical Vapor Deposition
RF-PECVD is an acronym for "Radio Frequency Plasma-Enhanced Chemical Vapor Deposition." It deposits DLC (Diamond-like carbon film) on germanium and silicon substrates. It is utilized in the 3-12um infrared wavelength range.
1200℃ Split Tube furnace with quartz tube
KT-TF12 split tube furnace: high-purity insulation, embedded heating wire coils, and max. 1200C. Widely used for new materials and chemical vapour deposition.
Pulsating vacuum desktop steam sterilizer
The pulsating vacuum desktop steam sterilizer is a compact and reliable device used for rapid sterilization of medical, pharmaceutical, and research items.
Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.
4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer
The 4-inch aluminum alloy cavity fully automatic laboratory glue dispensing machine is a compact and corrosion-resistant device designed for laboratory use. It features a transparent cover with constant torque positioning, an integrated mold opening inner cavity for easy disassembly and cleaning, and an LCD text display color facial mask button for ease of use.
Small vacuum tungsten wire sintering furnace
The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.
4 inch acrylic cavity fully automatic laboratory homogenizer
The 4-inch acrylic cavity fully automatic laboratory glue dispensing machine is a compact, corrosion-resistant, and easy-to-use machine designed for use in glove box operations. It features a transparent cover with constant torque positioning for chain positioning, an integrated mold opening inner cavity, and an LCD text display color facial mask button. The speed of acceleration and deceleration is controllable and adjustable, and multi-step program operation control can be set.
Get lightning-fast heating with our RTP Rapid Heating Tube Furnace. Designed for precise, high-speed heating and cooling with convenient sliding rail and TFT touch screen controller. Order now for ideal thermal processing!
Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.
Experience precise, efficient thermal testing with our Multi Zone Tube Furnace. Independent heating zones and temperature sensors allow for controlled high-temperature gradient heating fields. Order now for advanced thermal analysis!
Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T
Efficiently prepare samples with a split electric lab press - available in various sizes and ideal for material research, pharmacy, and ceramics. Enjoy greater versatility and higher pressure with this portable and programmable option.
Cylindrical Resonator MPCVD Diamond Machine for lab diamond growth
Learn about Cylindrical Resonator MPCVD Machine, the microwave plasma chemical vapor deposition method used for growing diamond gemstones and films in the jewelry and semi-conductor industries. Discover its cost-effective advantages over traditional HPHT methods.
Split automatic heated lab pellet press laboratory hot press 30T / 40T
Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.
Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T
Experience efficient sample preparation with our Automatic Lab Press Machine. Ideal for material research, pharmacy, ceramics, and more. Features a compact size and hydraulic press functionality with heating plates. Available in various sizes.
Related Articles
Plasma Enhanced Chemical Vapor Deposition (PECVD): A Comprehensive Guide
Learn everything you need to know about Plasma Enhanced Chemical Vapor Deposition (PECVD), a thin film deposition technique used in the semiconductor industry. Explore its principles, applications, and benefits.
Understanding PECVD: A Guide to Plasma-Enhanced Chemical Vapor Deposition
PECVD is a useful technique for creating thin film coatings because it allows for the deposition of a wide variety of materials, including oxides, nitrides, and carbides.
PECVD Furnace A Low-Power and Low-Temperature Solution for Soft Matter
PECVD (Plasma Enhanced Chemical Vapor Deposition) furnaces have become a popular solution for the deposition of thin films on soft matter surfaces.
Advantages of Using CVD Tube Furnace for Coating
CVD coatings have several advantages over other coating methods, such as high purity, density, and uniformity, making them ideal for many applications in various industries.
A Step-by-Step Guide to the PECVD Process
PECVD is a type of chemical vapor deposition process that uses plasma to enhance the chemical reactions between the gas-phase precursors and the substrate.
The Role of Plasma in PECVD Coatings
PECVD (Plasma Enhanced Chemical Vapor Deposition) is a type of thin film deposition process that is widely used for creating coatings on various substrates. In this process, a plasma is used to deposit thin films of various materials onto a substrate.
A Comprehensive Guide to PECVD Equipment Maintenance
Proper maintenance of PECVD equipment is crucial to ensure its optimal performance, longevity, and safety.
Comparing the Performance of PECVD and HPCVD in Coating Applications
Although both PECVD & HFCVD are used for coating applications, they differ in terms of deposition methods, performance, and suitability for specific applications.
Understanding the PECVD Method
PECVD is a plasma-enhanced chemical vapor deposition process that is widely used in the production of thin films for various applications.
A Comprehensive Guide to Split Tube Furnaces: Applications, Features
It is accurate that a split tube furnace is a type of laboratory equipment that consists of a hollow tube or chamber that can be opened to allow for the insertion and removal of samples or materials being heated.
Why PECVD is Essential for Microelectronic Device Fabrication
PECVD (Plasma-Enhanced Chemical Vapor Deposition) is a popular thin film deposition technique used in microelectronics device fabrication.
A beginner's guide to MPCVD machines
MPCVD (Microwave Plasma Chemical Vapor Deposition) is a process used to deposit thin films of material onto a substrate using plasma generated by microwaves.