Products Thermal Equipment Vacuum Furnace Vacuum pressure sintering furnace
Vacuum pressure sintering furnace

Vacuum Furnace

Vacuum pressure sintering furnace

Item Number : KT-VPS

Price varies based on specs and customizations


Maximum temperature
2100℃
Pressure range
10-800T
Heating method
Graphite
Vacuum degree
6×10-3Pa
Effective workspace
Customizable
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

A vacuum pressure sintering furnace is a high-temperature, high-pressure, and low-pressure sintering device primarily used to prepare high-performance ceramics, metals, and composite materials. It consists of a furnace body, heating device, vacuum system, and control system. The furnace operates by sintering powder or lump material under high temperature, vacuum, or inert gas environment, promoting material reorganization and recrystallization to form a dense structure with excellent performance. Vacuum pressure sintering furnaces prevent oxidation and pollution, ensuring material quality.

Details & Part

Vacuum pressure sintering furnace details

Applications

  • Vacuum sintering:
    • Sintering of metal powder, inorganic non-metallic materials, and high-temperature materials in a vacuum environment.
    • Densification of materials to prevent deformation and grain coarsening.
  • Pressure sintering:
    • Sintering of materials under high pressure to enhance their mechanical properties.
    • Production of ceramic parts, such as SiC and Si3N4, with improved strength and density.
  • Hard alloy sintering:
    • Sintering of hard alloys, such as tungsten carbide, to create wear-resistant and durable cutting tools.
  • Ceramic materials sintering:
    • Sintering of ceramic materials to achieve high purity, density, and electrical conductivity.
  • Carbon fiber graphitization:
    • Graphitization of carbon fibers to improve their electrical and thermal conductivity.
  • Carbon and carbon composites sintering:
    • Sintering of carbon and carbon composites to enhance their strength, thermal stability, and electrical properties.
  • Silicon carbide products sintering:
    • Sintering of silicon carbide products to produce high-strength, wear-resistant, and chemically inert materials.
  • Photoelectric coating materials sintering:
    • Sintering of photoelectric coating materials to create high-efficiency solar cells and other optoelectronic devices.
  • Refractory metals sintering:
    • Sintering of refractory metals, such as tungsten, molybdenum, and tungsten-copper alloys, to produce high-temperature resistant materials for aerospace and industrial applications.
  • Alloy materials sintering:
    • Sintering of alloy materials in a vacuum or atmosphere to achieve specific properties, such as corrosion resistance, high strength, and thermal stability.

Features

  • Enhanced Sintering Quality: By providing a vacuum or protective atmosphere, the furnace inhibits oxidation and contamination, resulting in high-quality sintered materials.
  • Versatile Sintering: The furnace accommodates a wide range of materials, including metal powders, inorganic non-metallic materials, and nanopowders, ensuring versatility in sintering applications.
  • Precise Temperature Control: The advanced PLC and temperature transmitter ensure accurate temperature regulation, enabling precise sintering processes.
  • Convenient Installation and Maintenance: Quick-connect electrical connections facilitate easy installation and relocation, while the standard-made electric control cabinet provides user-friendly operation and maintenance.
  • Reliable Pressurization: The imported pressure regulator ensures stable pressurization, preventing deformation and grain coarsening during sintering.
  • Comprehensive Safety Features: The classified sound and light alarm function, along with the use of Omron or Schneider electrical components, guarantees safe and reliable operation.

Principle

Vacuum pressure sintering furnace is a high-temperature, high-pressure sintering device. It is mainly used for the preparation of high-performance ceramics, metals, and composite materials. The basic principle of vacuum pressure sintering furnace is to sinter powder or lump material under high temperature, vacuum, or inert gas environment. Under high temperature diffusion, thermal cracking, chemical reaction, and other processes, the material undergoes microscopic reorganization and recrystallization to form a dense structure with excellent performance. This process avoids oxidation, pollution, and other undesirable effects on the material.

Advantages

  • Reduced contamination: Vacuum sintering reduces the contamination of harmful substances (such as water, oxygen, nitrogen, and other impurities) in the atmosphere that may affect the material, thus avoiding a series of adverse reactions such as decarburization, carburization, reduction, oxidation, nitriding, and so on.

  • Consistent, bright parts: Vacuum sintering produces consistent, bright parts with no seams, joints, or fillers.

  • Incredible design flexibility: Vacuum sintering is an efficient way to join parts with minimal waste. Components that require sintering are often delicate, intricate, and easy to botch. Vacuum sintering is an efficient way to join parts with minimal waste.

  • Quick turnaround: Vacuum sintering offers a quick turnaround time, making it an ideal solution for projects with tight deadlines.

  • Superior quality: Vacuum sintering produces parts with superior quality and fewer defects.

  • Easy maintenance: Vacuum sintering furnaces are easy to maintain, ensuring minimal downtime and maximum productivity.

  • Maximum productivity: Vacuum sintering furnaces offer maximum productivity, making them an ideal choice for high-volume production.

Technical specifications

Maximum temperature 2100℃
Pressure range  10-800T
Heating method Graphite
Vacuum degree 6×10-3Pa
Effective workspace Customizable

FAQ

What is a vacuum furnace used for?

A vacuum furnace is used for high-temperature processing of materials in a controlled environment without any contamination. It operates by surrounding the product with a vacuum, which prevents oxidation and heat loss from the product through convection. This furnace is commonly used for heat treatment of steel alloys at temperatures below 1200 °C. High-temperature vacuum furnaces can reach temperatures up to 3000°C and are used for industrial processes such as sintering, brazing, annealing, and heat treatment with high consistency and low contamination. The ability to achieve uniform heating across the entire workpiece is a key benefit of using a high-temperature vacuum furnace.

What is the process of a vacuum furnace?

The process of a vacuum furnace involves loading the parts into the chamber and creating a vacuum inside it by utilizing a vacuum pump. The next step is to heat the parts using temperature controls, which can reach between 1,500 and 5,400 degrees Fahrenheit. This process eliminates the possibility of oxidation and contamination, resulting in a higher purity end product. After heating, the parts are cooled and finished before being removed from the vacuum furnace. The furnace consists of various components, including the vacuum system, furnace shell, electric heating element, temperature controls, power supply system, and transport apparatus.

What gas is used in a vacuum furnace?

Different gases can be used in a vacuum furnace depending on the application. In general, vacuum furnaces can work with gases or mixtures such as Argon, Nitrogen, Hydrogen, Carbon Monoxide, Helium, among others. The use of these gases allows for heat treatment in a defined, mostly non-oxidizing atmosphere, which is required for various applications such as vacuum soldering and brazing, vacuum annealing, and sintering. Additionally, it is possible to work with a defined oxygen concentration that is different from the air composition.

What is the heating element used in a vacuum furnace?

The heating element in a vacuum furnace is critical to its proper functioning, and is dependent on factors such as maximum operating temperature, power load, partial pressure and quench gases, and life expectancy. Vacuum furnaces are heated by electric resistance elements made from a variety of materials, including high-temperature metallic alloys such as stainless steel, nickel-chromium, molybdenum, tungsten, tantalum, or of non-metallic materials such as graphite and silicon carbide. The choice of material for the heating element is important in maximizing its longevity, reliability, efficiency, and ultimately the process results.
View more faqs for this product

4.8

out of

5

Exceptional quality and craftsmanship. The vacuum pressure sintering furnace has exceeded our expectations, delivering remarkable results.

Ainsley Achtelik

4.9

out of

5

Highly recommended for its outstanding performance and durability. The furnace has proven to be a valuable asset in our laboratory.

Briar Rose

4.7

out of

5

Impeccable design and user-friendly interface. The vacuum pressure sintering furnace has streamlined our workflow, saving us both time and effort.

Cameron C. Mann

4.8

out of

5

Exceptional value for money. The furnace's cost-effectiveness has allowed us to expand our research capabilities significantly.

Dorian Gray

4.9

out of

5

Unparalleled technological advancement. The vacuum pressure sintering furnace has pushed the boundaries of our research, enabling us to achieve groundbreaking results.

Eleanor Rigby

4.7

out of

5

Lightning-fast delivery and impeccable packaging. The furnace arrived in perfect condition, ready to use immediately.

Finn McCool

4.8

out of

5

Outstanding customer support. The team at KINTEK SOLUTION has been incredibly responsive and helpful, ensuring a seamless experience.

Gandalf the Grey

4.9

out of

5

Highly customizable to meet our specific research needs. The vacuum pressure sintering furnace has become an indispensable tool in our laboratory.

Hermione Granger

4.7

out of

5

Intuitive software and comprehensive documentation. The furnace is easy to operate and maintain, saving us valuable time.

Isabella Swan

4.8

out of

5

Excellent energy efficiency and low operating costs. The vacuum pressure sintering furnace has reduced our energy consumption significantly.

Jack Sparrow

4.9

out of

5

Compact design and space-saving footprint. The furnace fits perfectly in our laboratory, maximizing our research space.

Katniss Everdeen

4.7

out of

5

Highly reliable and consistent performance. The vacuum pressure sintering furnace has proven to be a workhorse in our laboratory, delivering exceptional results every time.

Legolas Greenleaf

4.8

out of

5

Exceptional safety features and compliance with industry standards. The vacuum pressure sintering furnace provides peace of mind while conducting our research.

Lisbeth Salander

4.9

out of

5

Unmatched precision and accuracy. The vacuum pressure sintering furnace has enabled us to achieve unparalleled results in our research, pushing the boundaries of scientific discovery.

Sherlock Holmes

PDF of KT-VPS

Download

Catalog of Vacuum Furnace

Download

Catalog of Vacuum Furnace

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Vacuum furnace with ceramic fiber liner

Vacuum furnace with ceramic fiber liner

Vacuum furnace with polycrystalline ceramic fiber insulation liner for excellent heat insulation and uniform temperature field. Choose from 1200℃ or 1700℃ max. working temperature with high vacuum performance and precise temperature control.

Molybdenum Vacuum furnace

Molybdenum Vacuum furnace

Discover the benefits of a high-configuration molybdenum vacuum furnace with heat shield insulation. Ideal for high-purity, vacuum environments like sapphire crystal growth and heat treatment.

2200 ℃ Graphite Vacuum furnace

2200 ℃ Graphite Vacuum furnace

Discover the power of the KT-VG Graphite Vacuum Furnace - with a maximum working temperature of 2200℃, it's perfect for vacuum sintering of various materials. Learn more now.

2200 ℃ Tungsten vacuum furnace

2200 ℃ Tungsten vacuum furnace

Experience the ultimate refractory metal furnace with our Tungsten vacuum furnace. Capable of reaching 2200℃, perfect for sintering advanced ceramics and refractory metals. Order now for high-quality results.

Vacuum induction melting furnace Arc Melting Furnace

Vacuum induction melting furnace Arc Melting Furnace

Get precise alloy composition with our Vacuum Induction Melting Furnace. Ideal for aerospace, nuclear energy, and electronic industries. Order now for effective smelting and casting of metals and alloys.

Vacuum levitation Induction melting furnace

Vacuum levitation Induction melting furnace

Experience precise melting with our Vacuum Levitation Melting Furnace. Ideal for high melting point metals or alloys, with advanced technology for effective smelting. Order now for high-quality results.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Vacuum arc furnace Induction melting furnace

Vacuum arc furnace Induction melting furnace

Discover the power of Vacuum Arc Furnace for melting active & refractory metals. High-speed, remarkable degassing effect, and free of contamination. Learn more now!

Non consumable vacuum arc furnace Induction melting furnace

Non consumable vacuum arc furnace Induction melting furnace

Explore the benefits of Non-Consumable Vacuum Arc Furnace with high melting point electrodes. Small, easy to operate & eco-friendly. Ideal for laboratory research on refractory metals & carbides.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Vacuum Lamination Press

Vacuum Lamination Press

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Vacuum molybdenum wire sintering furnace

Vacuum molybdenum wire sintering furnace

A vacuum molybdenum wire sintering furnace is a vertical or bedroom structure, which is suitable for withdrawal, brazing, sintering and degassing of metal materials under high vacuum and high temperature conditions. It is also suitable for dehydroxylation treatment of quartz materials.

Small vacuum tungsten wire sintering furnace

Small vacuum tungsten wire sintering furnace

The small vacuum tungsten wire sintering furnace is a compact experimental vacuum furnace specially designed for universities and scientific research institutes. The furnace features a CNC welded shell and vacuum piping to ensure leak-free operation. Quick-connect electrical connections facilitate relocation and debugging, and the standard electrical control cabinet is safe and convenient to operate.

9.8MPa air pressure sintering furnace

9.8MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Vacuum brazing furnace

Vacuum brazing furnace

A vacuum brazing furnace is a type of industrial furnace used for brazing, a metalworking process that joins two pieces of metal using a filler metal that melts at a lower temperature than the base metals. Vacuum brazing furnaces are typically used for high-quality applications where a strong, clean joint is required.

Related Articles

Comprehensive Guide to Vacuum Hot Press Furnace Application

Comprehensive Guide to Vacuum Hot Press Furnace Application

The Vacuum Hot Press Furnace is a versatile tool especially suited for sintering experiments involving non-metallic materials, carbon composites, ceramic materials and metal powder materials.

Find out more
Vacuum Hot Press Furnace: A Comprehensive Guide

Vacuum Hot Press Furnace: A Comprehensive Guide

Gain in-depth knowledge of Vacuum Hot Press Furnaces, their components, benefits, and applications in various industries. Explore how these furnaces revolutionize material processing and achieve exceptional results.

Find out more
Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Vacuum Induction Melting Furnace: Principle, Advantages, and Applications

Discover the Vacuum Induction Melting Furnace, a specialized equipment that employs vacuum and induction heating to refine metals and alloys, ensuring high purity and precise composition control. Explore its principle, advantages, applications, and components in this comprehensive guide.

Find out more
Vacuum Laboratory Furnaces in Advanced Materials Research

Vacuum Laboratory Furnaces in Advanced Materials Research

In addition to size, there are several other key differences between industrial-scale and laboratory vacuum furnaces

Find out more
Materials Science with the Lab Vacuum Furnace

Materials Science with the Lab Vacuum Furnace

A vacuum furnace is a specialized type of furnace that is designed to operate in a vacuum environment. This means that the furnace is sealed and the air inside is pumped out, creating a low pressure or vacuum inside.

Find out more
Exploring Tungsten Vacuum Furnaces: Operation, Applications, and Advantages

Exploring Tungsten Vacuum Furnaces: Operation, Applications, and Advantages

Discover the operation, applications, and benefits of tungsten vacuum furnaces in laboratory settings. Learn about KinTek's advanced features, control mechanisms, and the use of tungsten in high-temperature environments.

Find out more
The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

Zirconia sintering furnaces are designed to give dental professionals the ability to create dental restorations with the highest level of precision and accuracy.

Find out more
Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Vacuum Melting Furnace: A Comprehensive Guide to Vacuum Induction Melting

Discover the intricacies of vacuum induction melting furnaces, their components, operation, advantages, and applications. Explore how these furnaces revolutionize metal processing and achieve exceptional material properties.

Find out more
Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Spark Plasma Sintering Furnace: The Ultimate Guide to SPS Furnaces

Discover the world of Spark Plasma Sintering Furnaces (SPS). This comprehensive guide covers everything from its advantages and applications to its process and equipment. Learn how SPS furnaces can revolutionize your sintering operations.

Find out more
Introducing the Lab Vacuum Tube Furnaces

Introducing the Lab Vacuum Tube Furnaces

A vacuum tube furnace is a type of furnace that uses vacuum to isolate the process atmosphere from the external atmosphere.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Maximizing Efficiency and Precision with Vacuum Graphite Furnaces

Discover how vacuum graphite furnaces revolutionize high-temperature material treatments with unmatched precision and efficiency. Explore customized solutions for various industries, advanced automation, and sustainable energy practices.

Find out more