Thematics Glass Substrate

glass substrate

Our glass substrates are engineered for precision in laboratory settings and beyond. From soda-lime optical glass to high-temperature resistant quartz, each product is designed to meet the exacting standards of optical technology. Discover our range of substrates, including sapphire sheets, boro-aluminosilicate glass, and optical quartz plates, all crafted to enhance your research and experiments.


Unmatched Quality in Glass Substrates

In the realm of optical technology, the quality of the substrate can make or break a project. Our glass substrates are meticulously crafted to offer unparalleled performance in a variety of applications. Whether you're working in telecommunications, astronomy, or laboratory research, our products are designed to meet your needs.

Soda-Lime Optical Glass

Our soda-lime optical glass is a favorite among researchers for its exceptional flatness and uniform thickness. Created by floating molten glass on molten tin, this method ensures a smooth, flawless surface ideal for thin and thick film deposition. Its versatility makes it a go-to choice for many optical applications.

Sapphire Substrates

Sapphire substrates are known for their extraordinary chemical, optical, and physical properties. Resistant to thermal shocks, high temperatures, sand erosion, and water, sapphire substrates are the backbone of many high-performance optical systems. Their durability and clarity make them indispensable in demanding environments.

Boro-Aluminosilicate Glass

Boro-aluminosilicate glass is renowned for its resistance to thermal expansion, making it ideal for applications requiring stability under varying temperatures. Commonly used in laboratory glassware and cooking utensils, this glass is a testament to its versatility and reliability.

Optical Quartz Glass

Optical quartz glass sheets are essential for precise light manipulation in various fields. From telecommunications to astronomy, these sheets offer exceptional clarity and tailored refractive properties. Their high purity and thermal resistance make them a preferred choice for advanced optical technologies.

K9 Quartz Sheet

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass. Renowned for its exceptional optical properties, K9 quartz sheets are used in a wide range of applications, from laboratory settings to industrial optics. Their durability and optical clarity set them apart.

Calcium Fluoride Substrates

Calcium fluoride (CaF2) windows are versatile and environmentally stable, resistant to laser damage and exhibiting high, stable transmission from 200 nm to about 7 μm. These properties make them ideal for precision imaging and signal transmission applications.

Magnesium Fluoride Crystal Substrates

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it crucial for single-crystal precision in imaging and signal transmission. Its unique properties ensure high-quality results in advanced optical systems.

Glassy Carbon Sheet - RVC

Our Glassy Carbon Sheet - RVC is perfect for experimental applications, offering high-quality material that elevates research to new heights. Its durability and performance make it a favorite among researchers.

Silicon Lenses

Silicon (Si) is one of the most durable mineral and optical materials, particularly for applications in the near-infrared (NIR) range. Our silicon lenses are designed to meet the demanding standards of optical technology, ensuring reliable performance.

Glass Oscillating Beads

Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation. Their precision and effectiveness make them an essential tool in many research projects.

At Kintek Solution, we pride ourselves on our ability to offer customized solutions that meet the specific needs of our clients. Our team of experts is dedicated to providing the highest quality glass substrates, ensuring that your projects succeed. For more information or to discuss your specific requirements, please contact us. We look forward to helping you achieve your goals with our premium glass substrates.

FAQ

What are the main types of glass substrates?

The main types of glass substrates include soda-lime glass, sapphire, boroaluminosilicate glass, optical quartz glass, K9 glass, CaF2 substrate, magnesium fluoride crystal substrate, and silicon.

What is soda-lime glass used for?

Soda-lime glass is widely used as an insulating substrate for thin and thick film deposition in various applications due to its uniform thickness and exceptionally flat surfaces.

What are the advantages of using sapphire substrates?

Sapphire substrates offer unparalleled chemical, optical, and physical properties. They are highly resistant to thermal shocks, high temperatures, sand erosion, and water, making them ideal for demanding applications.

Why is boroaluminosilicate glass suitable for laboratory glassware and cooking utensils?

Boroaluminosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils.

What are the applications of optical quartz glass sheets?

Optical quartz glass sheets are used for precise light manipulation in various fields including telecommunications, astronomy, and optical technology due to their exceptional clarity and tailored refractive properties.

What makes K9 glass special?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, making it suitable for various optical applications.

What is a CaF2 window used for?

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable, and resistant to laser damage, making them suitable for a wide range of optical applications.

What are the properties of magnesium fluoride crystal substrates?

Magnesium fluoride (MgF2) is a tetragonal crystal that exhibits anisotropy, making it imperative to treat it as a single crystal when engaging in precision imaging and signal transmission.

What is silicon used for in the near-infrared range?

Silicon (Si) is widely regarded as one of the most durable mineral and optical materials for applications in the near-infrared (NIR) range, approximately 1 μm to 6 μm.

What are glass vibration beads used for in laboratories?

Glass vibration beads, commonly used in laboratory settings, are transparent glass balls designed to prevent zeolite formation, making them useful in various experimental setups.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Application of Isostatic Graphite in the Photovoltaic Industry

Application of Isostatic Graphite in the Photovoltaic Industry

An overview of the use of isostatic graphite in various stages of photovoltaic production and its market demand.

Read more
Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Explore the world of atmosphere furnaces with our detailed guide. Learn about their types, applications in metallurgy and beyond, and the benefits they offer for precise material heat treatment.

Read more
Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Explore the detailed workings, applications, and benefits of quartz electrolytic cells in various industries. Learn how these cells facilitate precise chemical reactions and their role in high-purity metal production.

Read more
Infrared Heating Quantitative Flat Plate Mold: Design, Applications, and Benefits

Infrared Heating Quantitative Flat Plate Mold: Design, Applications, and Benefits

Explore the advanced design and applications of infrared heating quantitative flat plate molds. Learn about their benefits in achieving uniform heat distribution and efficient processing.

Read more
Precautions for installing silicon carbide stick

Precautions for installing silicon carbide stick

Precautions for installing silicon carbide stic.

Read more
PTFE Cleaning Racks: The Ultimate Guide to Cleaning and Drying Labware

PTFE Cleaning Racks: The Ultimate Guide to Cleaning and Drying Labware

In this comprehensive guide, we'll delve into the world of PTFE cleaning racks, exploring their benefits, applications, and the best practices for cleaning and drying labware to ensure optimal performance and longevity.

Read more
Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Delve into the world of optical quartz plates, exploring their exceptional properties, diverse applications in industries like optics, electronics, and more. Discover their advantages, including low thermal expansion, high temperature resistance, and precise optical clarity.

Read more
Unveiling the Versatility of Heated Lab Presses: A Comprehensive Guide

Unveiling the Versatility of Heated Lab Presses: A Comprehensive Guide

Explore the world of Heated Lab Presses, delving into their types, applications, key features, safety measures, and maintenance tips. Discover how these versatile tools empower laboratories across diverse industries.

Read more
Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Discover the versatility of optical quartz plates, exploring their uses in various industries, key specifications, and factors that differentiate them from glass. Gain insights into their applications in ultraviolet transmission, precision optics, and more.

Read more
Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Discover the remarkable characteristics and diverse applications of optical quartz plates, including their superior ultraviolet transmission, thermal stability, and use in lenses, lighting devices, and semiconductor manufacturing.

Read more
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

Read more
Understanding Cold Isostatic Pressing: Process, Comparisons, and Applications

Understanding Cold Isostatic Pressing: Process, Comparisons, and Applications

Cold isostatic pressing (CIP) is a method of processing materials that involves compacting powders by enclosing them in an elastomer mold. The process is based on Pascal's law, which states that pressure applied in an enclosed fluid is transmitted in all directions throughout the fluid without any change in magnitude.

Read more
Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing(HIP ) is a technology used to densify materials at high temperatures and pressures. The process involves placing a material in a sealed container, which is then pressurized with an inert gas and heated to a high temperature.

Read more
Comprehensive Guide to Isostatic Pressing:Processes, and Features

Comprehensive Guide to Isostatic Pressing:Processes, and Features

Isostatic pressing is a versatile manufacturing process that is widely used in various industries. It involves subjecting a material to equal pressure from all directions to achieve uniform density and shape. Isostatic pressing offers numerous advantages, such as the ability to produce complex shapes, uniformity in material properties, and high precision. This comprehensive guide will delve into the different types of isostatic pressing, including cold, warm, and hot pressing. We will explore the processes, features, and applications of each type, providing you with a thorough understanding of this essential manufacturing technique. So let's dive in!

Read more
An In-depth Analysis of Cold Isostatic Pressing Services

An In-depth Analysis of Cold Isostatic Pressing Services

Cold isostatic pressing (CIP) services utilize extremely high pressures to sterilize products or cold compact powders. CIP is particularly effective in producing complex shapes and increasing the final density of materials.

Read more
How to Save Money When Buying a Rotary Evaporator (Rotavapor)

How to Save Money When Buying a Rotary Evaporator (Rotavapor)

A rotary evaporator, also known as a rotavapor, is a laboratory equipment commonly used to remove solvents from a sample. It works by rotating the sample flask to create a thin film of the solvent, which is then evaporated.

Read more
Revolutionize Your Spectroscopy Analysis with FTIR Pellet Press

Revolutionize Your Spectroscopy Analysis with FTIR Pellet Press

FTIR (Fourier Transform Infrared) spectroscopy is a widely used technique to analyze the chemical composition of various materials. This method is particularly useful for samples that are difficult to analyze using other techniques.

Read more
The Future of Lab Presses in Research and Development

The Future of Lab Presses in Research and Development

Lab presses are an essential tool in research and development for a wide range of industries, including pharmaceuticals, materials science, and electronics.

Read more
5 Essential Applications of Rotary Evaporator in Labs

5 Essential Applications of Rotary Evaporator in Labs

Rotary evaporators, also known as rotovaps, are laboratory instruments used for distillation, concentration, and purification of samples. They are widely used in the chemical, pharmaceutical, and food and beverage industries for various applications.

Read more
Why PECVD is Essential for Microelectronic Device Fabrication

Why PECVD is Essential for Microelectronic Device Fabrication

PECVD (Plasma-Enhanced Chemical Vapor Deposition) is a popular thin film deposition technique used in microelectronics device fabrication.

Read more

Downloads

Catalog of Glass Material

Download

Catalog of Glass Substrate

Download

Catalog of Cvd Materials

Download

Catalog of Optical Quartz Plates

Download

Catalog of Optical Material

Download

Catalog of Optical Window

Download

Catalog of Optical Bandpass Filter

Download

Catalog of Thin Film Deposition Equipment

Download

Catalog of Laboratory Glassware

Download

Catalog of Thin Film Deposition Materials

Download

Catalog of Glass Reactor

Download

Catalog of High Pressure Reactor

Download

Catalog of Thermal Elements

Download

Catalog of Electrochemical Electrode

Download