Blog How To Use A Rotary Evaporator
How To Use A Rotary Evaporator

How To Use A Rotary Evaporator

2 years ago

Rotary evaporators (also called "rotavaps") are used to remove solvents from reaction mixtures and can accommodate volumes as large as 3 liters.

They are found in almost every organic laboratory, since they allow performing this task very quickly. A typical rotary evaporator has a water bath that can be heated in either a metal container or crystallization dish. This keeps the solvent from freezing during the evaporation process.

The solvent is removed under vacuum, is trapped by a condenser and is collected for easy reuse or disposal.

Most labs use a simple water aspirator vacuum on their rotavaps, so a rotavap cannot be used for air and water-sensitive materials unless special precautions are taken i.e. additional traps are used. In the lab, the house vacuum line, a circulation bath or a membrane pump are used as source for the vacuum (40-50 torr).

The fact that a vacuum is usually applied to the setup means that the boiling points of the solvents are going to be significantly lower than at ambient pressure (see table below).

Solvent b.p. (760 torr) b.p. (40 torr)
acetonitrile 81.8 oC 7.7 oC
diethyl ether 34.6 oC -27.7oC
ethanol 78.4 oC 19 oC
ethyl acetate 77.1 oC 9.1 oC
hexane 68.7 oC -2.3 oC
heptane 98.4 oC 22.3 oC
methanol 64.7 oC 5.0 oC
water 100 oC 34.0 oC

Since the flask is rotated during the evaporation process, the surface area is larger than normal which increases the evaporation rate significantly.

The solvent is collected in a flask and can properly be disposed off afterwards (organic solvent waste). In addition, this method also avoids overheating of the target compound i.e. oxidation because lower temperatures are used. The same rules like for vacuum filtrations apply here in terms of the glassware and other precautions i.e no cracks on the flask, etc.

General rules for usage of a rotary evaporator

  1. The solvent collection flask of the unit should always be emptied prior use to prevent accidentally mixing of incompatible chemicals. SAFETY FIRST! 
  2. The flask with the solution is placed on the rotary evaporator. The use of a bump trap prevents the solution from accidentally splashing into the condenser (and being contaminated). It is highly advisable to start with a clean bump bulb in case something bumps over after all! This would allow the experimenter to recover the solution or solid.
  3. A metal or Keck clip is used to secure the flask and the bump trap. The green one shown below fits 24/40 ground glass joints. Similar blue clips fit 19/22 joints and the yellow ones fit 14/20 joints, which will most likely used in the lab. If you break the bump trap, you will have to pay for it!
  4. The dial on the motor is used for speed control of the flask rotation. A typical rotavap uses a variable speed sparkless induction motor that spins at 0-220 rpm and provides high constant torque. A good setting here is 7-8. 
  5. The aspirator vacuum is turned on. On most models, the vacuum on/off control is managed by turning a stopcock at the top of the condenser (left side of the above diagram). This stopcock is later also used to vent the setup after the solvent is removed.
  6. The flask is lowered into the water bath (or the water bath is raised to immerse the flask in the warm water. (On most models, a convenient handle (with height locking mechanism) moves the entire condenser/motor/flask assembly up and down. Often the tilt of the condenser assembly can also be adjusted. The water bath temperature should not exceed the boiling point of the solvent!! For small amounts of common solvents the bath heater is not needed.
  7. The solvent should start collecting on the condenser and drip into the receiving flask. Some solvents (such as diethyl ether or dichloromethane) are so volatile that they will also evaporate from the receiving flask and be discharged down the drain. To prevent this, a cooling bath on the receiver or (on some models) use a dry-ice condenser can be used. In addition, an additional trap (with dry-ice or liquid nitrogen) can be placed between the vacuum source and the condenser unit. This is particularly important of a membrane pump is used as vacuum source.
  8. Once all the solvent evaporated (or whatever is desired at this point), the vacuum is released,. The flask is raised out of the water bath and the spinning is discontinued. 
  9. The bump trap has to be cleaned and the receiving flask is emptied upon completion of the evaporation.

Tips and Tricks

Distilled water should be used in the heating bath to minimize the scale build up in the bath which coats the thermistor and heating coils. It is very difficult to remove and reduces the efficiency of the bath. In addition, regular tap water will promote the growth of spectacularly disgusting algae colonies, particularly during the summer months. The best protocol is a regular exchange of the water.

To remove algae gunk from the inside of a coiled water condenser, the condenser has to be removed from the rotavap and the coil is soaked in a dilute nitric acid solution for a few hours. After carefully rinsing the insides, the rotavap is reassembled. All standard safety precautions should be followed when working with nitric acid!

The ground glass joint holding the flask does not need to be greased, but on rare occasions it (or the bump bulb) may get "frozen". Some companies sell special joint clips that can free frozen joints simply by screwing them in one direction. If you are not lucky enough to have these and cannot release the joint you probably want to ask your teaching assistant for advice. 

If a mechanical pump is used instead of an aspirator to produce a vacuum, a secondary trap has to be used to prevent that the solvent destroys the membrane or is absorbed in the oil.

CONTACT US FOR A FREE CONSULTATION

KINTEK LAB SOLUTION's products and services have been recognized by customers around the world. Our staff will be happy to assist with any inquiry you might have. Contact us for a free consultation and talk to a product specialist to find the most suitable solution for your application needs!

Related Products

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

0.5-1L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Looking for a reliable and efficient rotary evaporator? Our 0.5-1L rotary evaporator uses constant temperature heating and thin film evaporating to implement a range of operations, including solvent removal and separation. With high-grade materials and safety features, it's perfect for labs in pharmaceutical, chemical, and biological industries.

0.5-4L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

0.5-4L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate "low boiling" solvents with a 0.5-4L rotary evaporator. Designed with high-grade materials, Telfon+Viton vacuum sealing, and PTFE valves for contamination-free operation.

20L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

20L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate "low boiling" solvents with the 20L Rotary Evaporator, ideal for chemical labs in pharmaceutical and other industries. Guarantees working performance with selected materials and advanced safety features.

5-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

5-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate low-boiling solvents with the 5-50L Rotary Evaporator. Ideal for chemical labs, it offers precise and safe evaporating processes.

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

2-5L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently remove low boiling solvents with the KT 2-5L Rotary Evaporator. Perfect for chemical labs in the pharmaceutical, chemical, and biological industries.

10-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

10-50L Rotary Evaporator for Extraction, Molecular Cooking Gastronomy and Laboratory

Efficiently separate low boiling solvents with KT Rotary Evaporator. Guaranteed performance with high-grade materials and flexible modular design.

2L Short Path Distillation

2L Short Path Distillation

Extract and purify with ease using our 2L short path distillation kit. Our heavy-duty Borosilicate glassware, fast heating mantle, and delicate fitting device ensure efficient and high-quality distillation. Discover the advantages today!

20L Short Path Distillation

20L Short Path Distillation

Efficiently extract and purify mixed liquids with our 20L short path distillation system. High vacuum and low temperature heating for optimal results.

10L Short Path Distillation

10L Short Path Distillation

Extract and purify mixed liquids with ease using our 10L short path distillation system. High vacuum and low temperature heating for optimal results.

Lifting/tilting Glass Reactor

Lifting/tilting Glass Reactor

Enhance your synthetic reactions, distillation, and filtration processes with our lifting/tilting glass reactor system. With a wide range of temperature adaptability, accurate stirring control, and solvent-resistant valves, our system guarantees stable and pure results. Explore the features and optional functions today!

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Molecular Distillation

Molecular Distillation

Purify and concentrate natural products with ease using our molecular distillation process. With high vacuum pressure, low operating temperatures, and short heating times, preserve the natural quality of your materials while achieving excellent separation. Discover the advantages today!


Leave Your Message