Knowledge What is the Blown Film Technique? 5 Key Steps Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is the Blown Film Technique? 5 Key Steps Explained

The blown film technique is a method used in the production of plastic films, particularly for packaging materials.

This process involves extruding a plastic resin into a molten state through a circular die, inflating it with air to form a bubble, and then cooling, flattening, and winding the film.

The technique allows for the production of thin, flexible, and strong plastic films that are widely used in various applications such as packaging, agriculture, and construction.

5 Key Steps Explained: The Blown Film Technique

What is the Blown Film Technique? 5 Key Steps Explained

1. Extrusion Process

Molten State Formation: The blown film process begins with the extrusion of a plastic resin, typically polyethylene, into a molten state.

This is achieved by heating the resin in an extruder, which is a long, heated barrel with a rotating screw inside.

Circular Die: The molten plastic is then forced through a circular die, which shapes the plastic into a tube-like form.

2. Bubble Formation and Inflation

Air Inflation: Once the molten plastic exits the die, air is introduced through a hole in the center of the die, inflating the plastic into a bubble.

This bubble expands as more air is pumped in, creating a thin film of plastic.

Uniform Thickness: The inflation process helps in achieving a uniform thickness across the film, which is crucial for the film's performance and application.

3. Cooling and Flattening

Cooling: The inflated bubble is passed through a series of cooling rings or water baths to solidify the plastic.

This cooling step is essential to maintain the shape and integrity of the film.

Flattening: After cooling, the bubble is collapsed or flattened by a set of rollers, transforming it into a flat film.

4. Winding and Post-Treatment

Winding: The flattened film is then wound onto a roll for storage or further processing.

The winding process ensures that the film is neatly and compactly stored for easy handling and transportation.

Post-Treatment: Depending on the application, the film may undergo additional treatments such as printing, laminating, or coating to enhance its properties or functionality.

5. Applications and Benefits

Versatility: Blown film is used in a wide range of applications, including food packaging, industrial packaging, agricultural films, and construction materials.

Economical and Efficient: The blown film technique is known for its efficiency and cost-effectiveness, allowing for the production of large quantities of high-quality films with minimal waste.

Customizable Properties: The properties of the film, such as thickness, strength, and transparency, can be adjusted by varying the process parameters, making it highly adaptable to different needs.

In summary, the blown film technique is a versatile and efficient method for producing plastic films.

By understanding the key steps involved in the process, lab equipment purchasers can make informed decisions about the equipment and materials needed for their specific applications.

Continue exploring, consult our experts

Unlock the potential of your projects with KINTEK SOLUTION's precision equipment.

Discover how the advanced blown film technique revolutionizes packaging and beyond.

With KINTEK SOLUTION, you get not just state-of-the-art lab equipment, but also expert support and tailored solutions that align with your unique needs.

Dive into the world of efficiency, quality, and adaptability.

Don't settle for less – contact KINTEK SOLUTION today and elevate your production to new heights!

Related Products

Lab Blown Film Extrusion Three layer co-extrusion film blowing machine

Lab Blown Film Extrusion Three layer co-extrusion film blowing machine

Lab blown film extrusion is mainly used to detect the feasibility of film blowing of polymer materials and the colloid condition in the materials, as well as the dispersion of colored dispersions, controlled mixtures, and extrudates;

Lab Plastic PVC Calender   Stretch Film Casting Machine for Film Testing

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

The cast film machine is designed for the molding of polymer cast film products and has multiple processing functions such as casting, extrusion, stretching, and compounding.

Filter testing machine (FPV)

Filter testing machine (FPV)

The filter testing machine (FPV) is suitable for testing the dispersion properties of polymers such as pigments, additives and masterbatches by extrusion and filtration.

Aluminum-plastic flexible packaging film for lithium battery packaging

Aluminum-plastic flexible packaging film for lithium battery packaging

Aluminum-plastic film has excellent electrolyte properties and is an important safe material for soft-pack lithium batteries. Unlike metal case batteries, pouch batteries wrapped in this film are safer.

Small lab rubber calendering machine

Small lab rubber calendering machine

Small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories, small-scale production facilities, and prototyping environments to create films, coatings, and laminates with precise thickness and surface finish.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Slide PECVD tube furnace with liquid gasifier PECVD machine

Slide PECVD tube furnace with liquid gasifier PECVD machine

KT-PE12 Slide PECVD System: Wide power range, programmable temp control, fast heating/cooling with sliding system, MFC mass flow control & vacuum pump.

Plasma enhanced evaporation deposition PECVD coating machine

Plasma enhanced evaporation deposition PECVD coating machine

Upgrade your coating process with PECVD coating equipment. Ideal for LED, power semiconductors, MEMS and more. Deposits high-quality solid films at low temps.

Vacuum Induction Melting Spinning System Arc Melting Furnace

Vacuum Induction Melting Spinning System Arc Melting Furnace

Develop metastable materials with ease using our Vacuum Melt Spinning System. Ideal for research and experimental work with amorphous and microcrystalline materials. Order now for effective results.

Twin screw extruder plastic granulation machine

Twin screw extruder plastic granulation machine

Twin screw extruder plastic granulation machine is designed for the mixing and processing experiments of engineering plastics, modified plastics, waste plastics and masterbatches.

Vacuum Lamination Press

Vacuum Lamination Press

Experience clean and precise lamination with Vacuum Lamination Press. Perfect for wafer bonding, thin-film transformations, and LCP lamination. Order now!

Anti-cracking press mold

Anti-cracking press mold

The anti-cracking press mold is a specialized equipment designed for molding various shapes and sizes of film using high pressure and electric heating.

Infrared heating quantitative flat plate mold

Infrared heating quantitative flat plate mold

Discover advanced infrared heating solutions with high-density insulation and precise PID control for uniform thermal performance in various applications.

Isostatic pressing molds

Isostatic pressing molds

Explore high-performance isostatic pressing molds for advanced material processing. Ideal for achieving uniform density and strength in manufacturing.

Square bidirectional pressure mold

Square bidirectional pressure mold

Discover precision in molding with our Square Bidirectional Pressure Mold. Ideal for creating diverse shapes and sizes, from squares to hexagons, under high pressure and uniform heating. Perfect for advanced material processing.

Polyethylene separator for lithium battery

Polyethylene separator for lithium battery

The polyethylene separator is a key component of lithium-ion batteries, located between the positive and negative electrodes. They allow the passage of lithium ions while inhibiting electron transport. The performance of the separator affects the capacity, cycle and safety of the battery.

Round bidirectional press mold

Round bidirectional press mold

The round bidirectional press mold is a specialized tool used in high-pressure molding processes, particularly for creating intricate shapes from metal powders.

Cylindrical press mold with scale

Cylindrical press mold with scale

Discover precision with our Cylindrical Press Mold. Ideal for high-pressure applications, it molds various shapes and sizes, ensuring stability and uniformity. Perfect for lab use.

Drawing die nano-diamond coating HFCVD Equipment

Drawing die nano-diamond coating HFCVD Equipment

The nano-diamond composite coating drawing die uses cemented carbide (WC-Co) as the substrate, and uses the chemical vapor phase method ( CVD method for short ) to coat the conventional diamond and nano-diamond composite coating on the surface of the inner hole of the mold.

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine

915MHz MPCVD Diamond Machine and its multi-crystal effective growth, the maximum area can reach 8 inches, the maximum effective growth area of single crystal can reach 5 inches. This equipment is mainly used for the production of large-size polycrystalline diamond films, the growth of long single crystal diamonds, the low-temperature growth of high-quality graphene, and other materials that require energy provided by microwave plasma for growth.


Leave Your Message