Products Sample Preparation Rubber processing machine Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing
Lab Plastic PVC Calender   Stretch Film Casting Machine for Film Testing

Rubber processing machine

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

Item Number : RPM-02

Price varies based on specs and customizations


Screw diameter
25mm(or customized)
L:D(Ratio of length to diameter)
33:1(or customized)
Screw speed
0-95rpm(Frequency conversion speed regulation)
Motor power
4KW(or customized)
Die lip width
300mm(or customized)
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The cast film machine is designed for the molding of cast film products of polymer materials. It has multiple processing functions such as casting, extrusion, stretching, and compounding, and realizes program-controlled integrated linkage through the PLC system to ensure precise process. Product features include cast film molding of various polymer materials, high-precision guide rails of hidden calender units, and imported melt metering pumps and pressure sensors. Its application range covers cast product research and development, formula optimization, quality control, process parameter optimization, and teaching and scientific research.

Detail & Parts

RPM-02A

The Single layer cast film machine :Focusing on the industry research of polymer material cast film product molding, sheet extrusion molding, material performance testing, process optimization, product quality testing, etc. It can complete molding and processing tests such as extrusion, casting, stretching, and compounding;

  • Multi-layer co extrusion casting film machine
  • After multiple polymer melts are collected through the co-extrusion die, they become a film melt flow composed of multiple layers of different polymer melts, and after cooling, a multi-layer co-extruded film or sheet is obtained;
  • The integrated linkage of PLC system program control to complete extrusion, melt metering, melt pressure monitoring, casting, calendering, winding or cutting and other processes.
  • The imported melt metering pump is equipped with a pressure sensor to monitor the melt pressure, ensuring that the melt flow rate is always consistent.
Double layer (AB);Three layer(ABA);Three layer(ABC);Five layer(ABCBA)
Double layer (AB);Three layer(ABA);Three layer(ABC);Five layer(ABCBA)

The cast film machine details

The cast film machine details 2

Application

  • Film forming simulation: Through calendering or stretching process, the film forming process in actual production is simulated to ensure that the film prepared in the laboratory has similar structure and performance to the film in industrial production.
  • Performance testing: The prepared film can be used for various performance tests, such as tensile strength, elongation at break, heat shrinkage, light transmittance, haze, etc., to evaluate the quality and applicability of the film.
  • Formulation optimization: By adjusting the raw material formula and process parameters, the laboratory calender/stretch cast film machine can help researchers optimize the film formula to achieve specific performance requirements.
  • New material development: For the development of new materials, this equipment can be used to quickly evaluate the forming performance and potential applications of new materials, and accelerate the transformation process of new materials from laboratory to industrial production.
  • Quality control: During the production process, laboratory equipment can be used for sampling and testing to ensure that the quality of each batch of film meets the standards and reduce the defective rate.

Features

  • Versatility: supports cast film forming and laminating processes of various polymer materials to meet the processing requirements of different materials.
  • PLC system program control linkage: through the advanced PLC system, the integrated control of extrusion, casting, calendering and winding processes is realized to improve production efficiency and operation convenience.
  • Hidden calendering unit: adopts high-precision guide rails to ensure smooth operation, and at the same time facilitates the disassembly and cleaning of the mold to reduce maintenance time.
  • Multi-layer co-extrusion technology: multiple polymer melts are collected through the co-extrusion die to form a film melt flow composed of multiple layers of different polymer melts, and after cooling, a multi-layer co-extruded film or sheet is obtained.
  • Precision control: equipped with imported melt metering pumps and pressure sensors, real-time monitoring of melt pressure, ensuring the consistency of melt flow, thereby ensuring product quality.

Technical specifications

Model No. RPM-02A RPM-02B
Name Single layer Three layers
Screw diameter 25mm(or customized)
L:D(Ratio of length to diameter) 33:1(or customized)
Screw speed 0-95rpm(Frequency conversion speed regulation)
Motor power 4KW(or customized)
Die lip width 300mm(or customized)
Optional configuration 3CC melt pump or customized、Manual or hydraulic screen changer、Pressure sensor、Pressure sensor、Unwinding device
calendering part 160x350mmx2or customized
Installation method of calender roller Vertical or parallel
Winding device Friction winding
(W*D*H) Volume 2800*800*1650mm 3500*1600*2200mm
Weight(kg) ≈750kg ≈1.2T
Power Supply 3∮,AC380V

FAQ

What are the main types of rubber processing machines?

The main types of rubber processing machines include twin screw extruders, plate vulcanizing presses, open mixing mills, small lab rubber calendering machines, lab internal rubber mixers, lab plastic PVC calenders, automatic high temperature heat presses, and more. Each type is designed for specific tasks such as mixing, vulcanizing, calendering, and extruding rubber materials.

What materials can a diamond cutting machine cut?

Diamond cutting machines are designed to cut a variety of materials, including ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, and biomedical materials. They are particularly effective for cutting brittle materials with high precision.

What is Physical vapor deposition (PVD)?

Physical vapor deposition (PVD) is a technique for depositing thin films by vaporizing a solid material in a vacuum and then depositing it onto a substrate. PVD coatings are highly durable, scratch-resistant, and corrosion-resistant, making them ideal for a variety of applications, from solar cells to semiconductors. PVD also creates thin films that can withstand high temperatures. However, PVD can be costly, and the cost varies depending on the method used. For instance, evaporation is a low-cost PVD method, while ion beam sputtering is rather expensive. Magnetron sputtering, on the other hand, is more expensive but more scalable.

What is a casting film machine, and how does it work?

A casting film machine is a type of equipment used to produce thin plastic films by the casting method. The process involves extruding a polymer melt through a die onto a chill roll (also known as a casting drum), where it cools and solidifies into a film. The film is then wound onto a roll for further processing or use.

What are the primary applications of casting film machines?

The primary applications of casting film machines include: Packaging Films: Producing high-quality, transparent, and sealable films for food packaging, medical packaging, and industrial applications. Industrial Films: Manufacturing films for agricultural mulch, construction sheeting, and protective coverings. Specialty Films: Creating films with specific properties, such as high barrier, anti-fog, or anti-static characteristics.

What are the advantages of using a casting film machine over other film production methods?

The advantages of using a casting film machine over other film production methods include: High Quality Films: Casting produces films with excellent optical clarity, uniformity, and surface smoothness. Wide Range of Materials: Suitable for a wide range of polymers, including polyethylene (PE), polypropylene (PP), and polyesters (PET). Energy Efficiency: The casting process is generally more energy-efficient compared to blown film extrusion. Flexibility: Allows for the production of thin films and the incorporation of additives for specific properties.

What are the key parameters to consider when operating a casting film machine?

Key parameters to consider when operating a casting film machine include: Extrusion Temperature: Controlling the temperature profile of the extruder to ensure proper melting and flow of the polymer. Die Gap and Alignment: Adjusting the die gap and ensuring proper alignment to achieve uniform film thickness. Chill Roll Temperature: Maintaining the temperature of the chill roll to facilitate rapid and uniform cooling of the film. Take-Up Tension: Controlling the tension during winding to prevent stretching or wrinkling of the film. Additive Incorporation: Precisely dosing and dispersing additives, such as slip agents or anti-block agents, into the polymer melt.

How does a casting film machine ensure uniform film thickness and quality?

A casting film machine ensures uniform film thickness and quality through several mechanisms: Precision Dies: Using precision-engineered dies with adjustable gaps to control the thickness of the extruded film. Feedback Control Systems: Implementing feedback control systems to monitor and adjust the film thickness in real-time. Uniform Cooling: Ensuring uniform and rapid cooling on the chill roll to solidify the film without distortion. Quality Control Measures: Conducting regular inspections and quality control checks throughout the production process to detect and correct any deviations.

What are the methods used to deposit thin films?

The two main methods used to deposit thin films are chemical vapor deposition (CVD) and physical vapor deposition (PVD). CVD involves introducing reactant gases into a chamber, where they react on the surface of the wafer to form a solid film. PVD does not involve chemical reactions; instead, vapors of constituent materials are created inside the chamber, which then condense on the wafer surface to form a solid film. Common types of PVD include evaporation deposition and sputtering deposition. The three types of evaporation deposition techniques are thermal evaporation, electron-beam evaporation, and inductive heating.

What is Mpcvd?

MPCVD stands for Microwave Plasma Chemical Vapor Deposition and it is a process of depositing thin films onto a surface. It uses a vacuum chamber, microwave generator, and gas delivery system to create a plasma made up of reacting chemicals and necessary catalysts. MPCVD is heavily used in the ANFF network to deposit layers of diamond using methane and hydrogen to grow new diamond on a diamond-seeded substrate. It is a promising technology for producing low-cost, high-quality large diamonds and is extensively used in the semiconductor and diamond cutting industry.

How do electric laboratory presses work?

Electric laboratory presses typically consist of a motor-driven ram or piston that applies force to a sample through a platen or die. The electric motor is controlled by a control panel, allowing the user to set and adjust the desired force and speed. The sample is placed between the platens, and as the motor drives the ram, the force is applied, exerting pressure on the sample. This controlled pressure enables various processes such as compression testing, powder compaction, sample preparation, and material synthesis.

What is the principle of operation for a twin screw extruder plastic granulation machine?

A twin screw extruder plastic granulation machine operates by mixing and processing raw materials like engineering plastics, modified plastics, waste plastics, and masterbatches through a twin screw mechanism. This machine ensures thorough mixing and processing for various plastic materials.

What is the principle behind a diamond cutting machine?

Diamond cutting machines utilize a continuous diamond wire cutting mechanism. This mechanism allows for precise cutting of materials by moving the diamond wire downward at a constant speed while the material is fixed on the workbench. The machine can also rotate the workbench 360 degrees for different cutting angles.

What is magnetron sputtering?

Magnetron sputtering is a plasma-based coating technique used to produce very dense films with excellent adhesion, making it a versatile method for creating coatings on materials that have high melting points and cannot be evaporated. This method generates a magnetically confined plasma near the surface of a target, where positively charged energetic ions collide with the negatively charged target material, causing atoms to be ejected or "sputtered." These ejected atoms are then deposited on a substrate or wafer to create the desired coating.

What is thin film deposition equipment?

Thin film deposition equipment refers to the tools and methods used to create and deposit thin film coatings onto a substrate material. These coatings can be made of various materials and have different characteristics that can improve or alter the substrate's performance. Physical vapor deposition (PVD) is a popular technique that involves vaporizing a solid material in a vacuum, then depositing it onto a substrate. Other methods include evaporation and sputtering. Thin film deposition equipment is used in the production of opto-electronic devices, medical implants, and precision optics, among others.

What is Mpcvd machine?

The MPCVD (Microwave Plasma Chemical Vapor Deposition) machine is a laboratory equipment used to grow high-quality diamond films. It uses a carbon-containing gas and a microwave plasma to create a plasma ball above the diamond substrate, which heats it to a specific temperature. The plasma ball doesn't contact the cavity wall, making the diamond growth process free from impurities and enhancing the diamond's quality. The MPCVD system consists of a vacuum chamber, a microwave generator, and a gas delivery system that controls the flow of gas into the chamber.

What are the advantages of using electric laboratory presses?

Electric laboratory presses offer several advantages over manual or hydraulic presses. The electric motor provides precise control over the applied force, allowing for accurate and repeatable results. They offer adjustable speed and force settings, making them versatile for different applications and materials. Electric presses are generally quieter, cleaner, and more energy-efficient compared to hydraulic systems. Additionally, they eliminate the need for hydraulic fluid and associated maintenance. Electric presses also have a smaller footprint, making them suitable for laboratory environments with limited space.

What is the purpose of a plate vulcanizing press in rubber processing?

A plate vulcanizing press is used for the vulcanization of rubber products. Vulcanization is a critical process in rubber manufacturing that improves the material's strength, elasticity, and resistance to heat and chemicals.

What are the advantages of using a diamond cutting machine?

The advantages of diamond cutting machines include high cutting accuracy, continuous operation without manual adjustment, and the ability to cut both large and small samples with high dimensional accuracy. They also feature a pneumatic tensioning system for stable and reliable tensioning force, and a PLC program control system for simple and fast operation.

Why magnetron sputtering?

Magnetron sputtering is preferred due to its ability to achieve high precision in film thickness and density of coatings, surpassing evaporation methods. This technique is especially suitable for creating metallic or insulating coatings with specific optical or electrical properties. Additionally, magnetron sputtering systems can be configured with multiple magnetron sources.

What is thin-film deposition technology?

Thin film deposition technology is the process of applying a very thin film of material, ranging in thickness from a few nanometers to 100 micrometers, onto a substrate surface or onto previously deposited coatings. This technology is used in the production of modern electronics, including semiconductors, optical devices, solar panels, CDs, and disk drives. The two broad categories of thin film deposition are chemical deposition, where a chemical change produces a chemically deposited coating, and physical vapor deposition, where a material is released from a source and deposited on a substrate using mechanical, electromechanical, or thermodynamic processes.

What are the advantages of Mpcvd?

MPCVD has several advantages over other methods of diamond production, such as higher purity, less energy consumption, and the ability to produce larger diamonds.

What are the applications of electric laboratory presses?

Electric laboratory presses find applications in a wide range of scientific and industrial settings. They are commonly used for compression testing of materials, including polymers, metals, ceramics, and composites. These presses are also employed in powder compaction processes, such as tabletting in pharmaceutical manufacturing or the preparation of powdered samples for analysis. Electric presses are used for material synthesis, such as the formation of thin films or the fabrication of electrodes. Additionally, they are utilized in research and development for sample preparation, sample extrusion, and various other processes that require precise application of force and pressure.

How does an open mixing mill for rubber work?

An open mixing mill for rubber works by mixing and dispersing rubber, plastic raw materials, pigments, masterbatches, and other high molecular polymers. The machine consists of two rollers that rotate in opposite directions, ensuring uniform mixing and dispersion of the materials.

What types of diamond cutting machines are available?

There are several types of diamond cutting machines, including high precision diamond wire cutting machines, workbench diamond single wire circular small cutting machines, and high precision automatic diamond wire cutting machines. Each type is designed for specific applications, such as precision cutting of ultra-thin plates or cutting various brittle crystals with high hardness.

What are the materials used in thin film deposition?

Thin film deposition commonly utilizes metals, oxides, and compounds as materials, each with its unique advantages and disadvantages. Metals are preferred for their durability and ease of deposition but are relatively expensive. Oxides are highly durable, can withstand high temperatures, and can be deposited at low temperatures, but can be brittle and challenging to work with. Compounds offer strength and durability, can be deposited at low temperatures and tailored to exhibit specific properties.

The selection of material for a thin film coating is dependent on the application requirements. Metals are ideal for thermal and electrical conduction, while oxides are effective in offering protection. Compounds can be tailored to suit specific needs. Ultimately, the best material for a particular project will depend on the specific needs of the application.

What are the advantages of using thin film deposition equipment?

Thin film deposition equipment offers several advantages in various industries and research fields. It enables precise control over film properties such as thickness, composition, and structure, allowing for tailored materials with specific functionalities. Thin films can be deposited over large areas, complex shapes, and different substrate materials. The deposition process can be optimized to achieve high uniformity, adhesion, and purity of the films. Additionally, thin film deposition equipment can operate at relatively low temperatures, reducing thermal stress on the substrate and enabling deposition on temperature-sensitive materials. Thin films find applications in fields such as electronics, optics, energy, coatings, and biomedical devices, offering enhanced performance, protection, or functionality.

Are CVD diamonds real or fake?

CVD diamonds are real diamonds and not fake. They are grown in a laboratory through a process called Chemical Vapor Deposition (CVD). Unlike natural diamonds that are mined from under the earth's surface, CVD diamonds are created using advanced technology in labs. These diamonds are 100% carbon and are the purest form of diamonds known as Type IIa diamonds. They have the same optical, thermal, physical, and chemical properties as natural diamonds. The only difference is that CVD diamonds are created in a lab and not mined from the earth.

What considerations should be taken when selecting an electric laboratory press?

Several factors should be considered when selecting an electric laboratory press. The required force capacity should match the specific application and the maximum force expected. The platen size should accommodate the sample size and shape. The speed range and control options should align with the desired testing or processing requirements. It is important to ensure the press is constructed from durable materials and designed for long-term use. Safety features, such as emergency stop buttons and protective shields, should be evaluated. Additionally, the availability of accessories, such as different platens or heating options, can be crucial for specific applications.

What are the advantages of using a lab internal rubber mixer?

A lab internal rubber mixer offers advantages such as efficient mixing, kneading, and dispersing of various chemical raw materials like plastics, rubber, synthetic rubber, and low-viscosity materials. It is particularly useful for laboratory settings where precise control and small batch processing are required.

How does a diamond cutting machine ensure high precision cutting?

Diamond cutting machines ensure high precision cutting through several features, such as a continuous diamond wire cutting mechanism, a pneumatic tensioning system for stable tensioning force, and a PLC program control system for precise operation. The machines also allow for manual or program-controlled rotation of the workbench, ensuring accurate cutting angles.

What are the methods to achieve optimal thin film deposition?

To achieve thin films with desirable properties, high-quality sputtering targets and evaporation materials are essential. The quality of these materials can be influenced by various factors, such as purity, grain size, and surface condition.

The purity of sputtering targets or evaporation materials plays a crucial role, as impurities can cause defects in the resulting thin film. Grain size also affects the quality of the thin film, with larger grains leading to poor film properties. Additionally, the surface condition is crucial, since rough surfaces can result in defects in the film.

To attain the highest quality sputtering targets and evaporation materials, it is crucial to select materials that possess high purity, small grain size, and smooth surfaces.

Uses of Thin Film Deposition

Zinc Oxide-Based Thin Films

ZnO thin films find applications in several industries such as thermal, optical, magnetic, and electrical, but their primary use is in coatings and semiconductor devices.

Thin-Film Resistors

Thin-film resistors are crucial for modern technology and are used in radio receivers, circuit boards, computers, radiofrequency devices, monitors, wireless routers, Bluetooth modules, and cell phone receivers.

Magnetic Thin Films

Magnetic thin films are used in electronics, data storage, radio-frequency identification, microwave devices, displays, circuit boards, and optoelectronics as key components.

Optical Thin Films

Optical coatings and optoelectronics are standard applications of optical thin films. Molecular beam epitaxy can produce optoelectronic thin-film devices (semiconductors), where epitaxial films are deposited one atom at a time onto the substrate.

Polymer Thin Films

Polymer thin films are used in memory chips, solar cells, and electronic devices. Chemical deposition techniques (CVD) offer precise control of polymer film coatings, including conformance and coating thickness.

Thin-Film Batteries

Thin-film batteries power electronic devices such as implantable medical devices, and the lithium-ion battery has advanced significantly thanks to the use of thin films.

Thin-Film Coatings

Thin-film coatings enhance the chemical and mechanical characteristics of target materials in various industries and technological fields. Anti-reflective coatings, anti-ultraviolet or anti-infrared coatings, anti-scratch coatings, and lens polarization are some common examples.

Thin-Film Solar Cells

Thin-film solar cells are essential to the solar energy industry, enabling the production of relatively cheap and clean electricity. Photovoltaic systems and thermal energy are the two main applicable technologies.

What factors should be considered when selecting thin film deposition equipment?

Several factors should be considered when selecting thin film deposition equipment. The technique (PVD, CVD, ALD, MBE) should align with the desired film properties and the specific material being deposited. The size and configuration of the deposition chamber should accommodate the substrate size and shape requirements. The equipment's capabilities in terms of film thickness control, uniformity, and deposition rate should meet the application needs. Considerations should also include the availability and compatibility of precursor materials or target sources for the desired film composition. Other factors to consider are the ease of operation, maintenance requirements, vacuum system reliability, and any additional features such as in situ monitoring or control options. Consulting with experts or manufacturers can provide valuable guidance in selecting the most suitable thin film deposition equipment for a specific application.

What applications does a small lab rubber calendering machine have?

A small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories and small-scale production facilities for creating films, coatings, and laminates with precise thickness and surface finish.

What is the application range of a diamond cutting machine?

Diamond cutting machines are widely used in various industries for cutting materials of different hardness. They are particularly suitable for processing larger-sized precious materials and can handle materials such as ceramics, crystals, glass, metals, rocks, thermoelectric materials, infrared optical materials, composite materials, and biomedical materials.

Factors and Parameters that Influence Deposition of Thin Films

Deposition Rate:

The rate at which the film is produced, typically measured in thickness divided by time, is crucial for selecting a technology suitable for the application. Moderate deposition rates are sufficient for thin films, while quick deposition rates are necessary for thick films. It is important to strike a balance between speed and precise film thickness control.

Uniformity:

The consistency of the film across the substrate is known as uniformity, which usually refers to film thickness but can also relate to other properties such as the index of refraction. It is important to have a good understanding of the application to avoid under- or over-specifying uniformity.

Fill Capability:

Fill capability or step coverage refers to how well the deposition process covers the substrate's topography. The deposition method used (e.g., CVD, PVD, IBD, or ALD) has a significant impact on step coverage and fill.

Film Characteristics:

The characteristics of the film depend on the application's requirements, which can be categorized as photonic, optical, electronic, mechanical, or chemical. Most films must meet requirements in more than one category.

Process Temperature:

Film characteristics are significantly affected by process temperature, which may be limited by the application.

Damage:

Each deposition technology has the potential to damage the material being deposited upon, with smaller features being more susceptible to process damage. Pollution, UV radiation, and ion bombardment are among the potential sources of damage. It is crucial to understand the limitations of the materials and tools.

What safety considerations are associated with operating thin film deposition equipment?

Operating thin film deposition equipment requires certain safety considerations to ensure the well-being of operators and prevent potential hazards. Some deposition techniques involve the use of high temperatures, vacuum environments, or toxic gases. Adequate safety protocols should be in place, including proper training for operators, use of personal protective equipment (PPE), and adherence to safety guidelines provided by the equipment manufacturer and regulatory agencies. Proper ventilation systems should be installed to handle any hazardous gases or by-products generated during the deposition process. Emergency shut-off systems, alarms, and interlocks should be implemented to handle unexpected events or equipment malfunctions. Maintenance and periodic inspections should also be conducted to ensure the equipment's safety and functionality. It is crucial to have well-established safety protocols and follow recommended practices to minimize risks associated with thin film deposition equipment operation.

How does an automatic high temperature heat press machine function?

An automatic high temperature heat press machine is designed for pressing, sintering, and processing materials in a high temperature environment. It can operate at temperatures ranging from hundreds to thousands of degrees Celsius, making it suitable for various high temperature process requirements.

What makes a lab blown film extrusion machine useful?

A lab blown film extrusion machine is useful for detecting the feasibility of film blowing of polymer materials, assessing the colloid condition in the materials, and evaluating the dispersion of colored dispersions and extrudates. It is essential for research and development in polymer processing.
View more faqs for this product

4.7

out of

5

Incredible speed and precision, a game-changer for our lab!

Anika Patel

4.8

out of

5

Top-notch quality and durability, worth every penny.

Carlos Silva

4.9

out of

5

Technologically advanced, simplifies our casting process beautifully.

Elena Müller

4.7

out of

5

Efficient and reliable, a must-have for any dental lab.

Hiroshi Tanaka

4.8

out of

5

Outstanding value for money, highly recommend!

Isabella Rossi

4.9

out of

5

Revolutionary technology, enhances our lab's capabilities.

Javier Gomez

4.7

out of

5

Fast delivery and excellent customer service.

Katarina Svensson

4.8

out of

5

Impressive build quality, very durable.

Liam O'Brien

4.9

out of

5

State-of-the-art features, boosts our productivity.

Marta Kowalska

4.7

out of

5

Exceptional performance, exceeded our expectations.

Nikolai Petrov

4.8

out of

5

User-friendly and efficient, a great addition to our lab.

Olivia Kim

4.9

out of

5

Highly advanced, perfect for precision casting needs.

Paulo Santos

4.7

out of

5

Reliable and sturdy, handles high workloads with ease.

Quentin Moreau

4.8

out of

5

Innovative design, enhances our casting accuracy.

Rita Singh

4.9

out of

5

Excellent value and support, couldn't be happier.

Sofia Alvarez

PDF - Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

Download

Catalog of Rubber Processing Machine

Download

Catalog of Thin Film Deposition Equipment

Download

Catalog of Mpcvd Machine

Download

Catalog of Electric Lab Press

Download

Catalog of Rubber Processing Machine

Download

Catalog of Diamond Cutting Machine

Download

Catalog of Thin Film Deposition Materials

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Cylindrical press mold

Cylindrical press mold

Efficiently form and test most samples with Cylindrical Press Molds in a range of sizes. Made of Japanese high-speed steel, with long service life and customizable sizes.

Cylindrical press mold with scale

Cylindrical press mold with scale

Discover precision with our Cylindrical Press Mold. Ideal for high-pressure applications, it molds various shapes and sizes, ensuring stability and uniformity. Perfect for lab use.

Square Lab Press Mold

Square Lab Press Mold

Create uniform samples easily with Square Lab Press Mold - available in various sizes. Ideal for battery, cement, ceramics, and more. Custom sizes available.

Square bidirectional pressure mold

Square bidirectional pressure mold

Discover precision in molding with our Square Bidirectional Pressure Mold. Ideal for creating diverse shapes and sizes, from squares to hexagons, under high pressure and uniform heating. Perfect for advanced material processing.

Round bidirectional press mold

Round bidirectional press mold

The round bidirectional press mold is a specialized tool used in high-pressure molding processes, particularly for creating intricate shapes from metal powders.

Carbide Lab Press Mold

Carbide Lab Press Mold

Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.

Ball press mold

Ball press mold

Explore versatile Hydraulic Hot Press molds for precise compression molding. Ideal for creating various shapes and sizes with uniform stability.

Ring press mold

Ring press mold

Ring Press Dies, also known as Circular Pellet Press Die Sets, are integral components in various industrial and laboratory processes.

Assemble Square Lab Press Mold

Assemble Square Lab Press Mold

Achieve perfect sample preparation with Assemble Square Lab Press Mold. Quick disassembly eliminates sample deformation. Perfect for battery, cement, ceramics, and more. Customizable sizes available.

Anti-cracking press mold

Anti-cracking press mold

The anti-cracking press mold is a specialized equipment designed for molding various shapes and sizes of film using high pressure and electric heating.

Plate vulcanizing press vulcanised rubber machine for lab

Plate vulcanizing press vulcanised rubber machine for lab

The Plate vulcanizing press is a kind of equipment used in the production of rubber products, mainly used for the vulcanization of rubber products. Vulcanization is a key step in rubber processing.

4 inch PP chamber fully automatic laboratory homogenizer

4 inch PP chamber fully automatic laboratory homogenizer

Compact and efficient glue homogenizer for precise sample preparation in laboratories, featuring a 4-inch PP chamber, corrosion-resistant design, user-friendly LCD display, and customizable speed settings for optimal homogenization results.

Mini SS High Pressure Reactor

Mini SS High Pressure Reactor

Mini SS High Pressure Reactor - Ideal for medicine, chemical, and scientific research industries. Programmed heating temp and stirring speed, up to 22Mpa pressure.

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

The 4-inch stainless steel chamber fully automatic laboratory glue homogenizer is a compact and corrosion-resistant device designed for use in glove box operations. It features a transparent cover with constant torque positioning and an integrated mold opening inner cavity for easy disassembly, cleaning, and replacement.

4 inch PTFE cavity fully automatic laboratory homogenizer

4 inch PTFE cavity fully automatic laboratory homogenizer

4 inch PTFE cavity fully automatic laboratory homogenizer is a versatile laboratory equipment designed for efficient and precise homogenization of small samples. It features a compact design, allowing for easy glove box operation and space optimization.

Laboratory high temperature PTFE mixing paddle mixer

Laboratory high temperature PTFE mixing paddle mixer

The PTFE mixing paddle mixer is a versatile and robust tool designed for laboratory use, particularly in environments requiring high resistance to chemicals and extreme temperatures. Crafted from high-quality PTFE, this mixer boasts several key features that enhance its functionality and durability.

Double plate heating mold

Double plate heating mold

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

Infrared heating quantitative flat plate mold

Infrared heating quantitative flat plate mold

Discover advanced infrared heating solutions with high-density insulation and precise PID control for uniform thermal performance in various applications.

4 inch acrylic cavity fully automatic laboratory homogenizer

4 inch acrylic cavity fully automatic laboratory homogenizer

The 4-inch acrylic cavity fully automatic laboratory glue dispensing machine is a compact, corrosion-resistant, and easy-to-use machine designed for use in glove box operations. It features a transparent cover with constant torque positioning for chain positioning, an integrated mold opening inner cavity, and an LCD text display color facial mask button. The speed of acceleration and deceleration is controllable and adjustable, and multi-step program operation control can be set.

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

4 inch aluminum alloy chamber fully automatic laboratory glue homogenizer

The 4-inch aluminum alloy cavity fully automatic laboratory glue dispensing machine is a compact and corrosion-resistant device designed for laboratory use. It features a transparent cover with constant torque positioning, an integrated mold opening inner cavity for easy disassembly and cleaning, and an LCD text display color facial mask button for ease of use.

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

Get precise XRF samples with our plastic ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for perfect molding every time.

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Inclined rotary plasma enhanced chemical deposition (PECVD) tube furnace machine

Introducing our inclined rotary PECVD furnace for precise thin film deposition. Enjoy automatic matching source, PID programmable temperature control, and high accuracy MFC mass flowmeter control. Built-in safety features for peace of mind.

Lab scale rotary tablet punching machine

Lab scale rotary tablet punching machine

This machine is a single-pressure automatic rotating, continuous tableting machine that compresses granular raw materials into various tablets. It is mainly used for tablet production in the pharmaceutical industry, and is also suitable for chemical, food, electronics and other industrial sectors.

Automatic High-Temp Heat Press

Automatic High-Temp Heat Press

The Automatic High Temperature Heat Press is a sophisticated hydraulic hot press designed for efficient temperature control and product quality processing.

Lab Roller Mill

Lab Roller Mill

The roller mill is a horizontal grinder with 1-20L batch grinding capacity. It uses different tanks, rotating to grind samples below 20um. Features include stainless steel construction, soundproof cover, LED lighting, and PC window.

Automatic high temperature heat press machine

Automatic high temperature heat press machine

The High Temperature Hot Press is a machine specifically designed for pressing, sintering and processing materials in a high temperature environment. It is capable of operating in the range of hundreds of degrees Celsius to thousands of degrees Celsius for a variety of high temperature process requirements.

High precision diamond wire cutting machine

High precision diamond wire cutting machine

The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Related Articles

Electron Beam Evaporation Coating: Advantages, Disadvantages, and Applications

Electron Beam Evaporation Coating: Advantages, Disadvantages, and Applications

An in-depth look at the pros and cons of electron beam evaporation coating and its various applications in industries.

Find out more
Thin Film System Design: Principles, Considerations, and Practical Applications

Thin Film System Design: Principles, Considerations, and Practical Applications

An in-depth exploration of thin film system design principles, technological considerations, and practical applications in various fields.

Find out more
Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Controlling Film Thickness Tolerance in Magnetron Sputtering Coating

Discusses methods to ensure film thickness tolerance in magnetron sputtering coating for optimal material performance.

Find out more
Precision Tuned Thin Film Technology: Chemical Vapor Deposition (CVD) in Chalcogenide Solar Cells

Precision Tuned Thin Film Technology: Chemical Vapor Deposition (CVD) in Chalcogenide Solar Cells

Explores the role of CVD in improving the performance and scalability of chalcogenide solar cells, with a focus on its advantages and applications.

Find out more
Impact of Various Power Supplies on Sputtered Film Morphology

Impact of Various Power Supplies on Sputtered Film Morphology

This article discusses how different power supplies affect the morphology of sputtered film layers, focusing on DC, PDC, and RF power supplies.

Find out more
Factors Affecting the Adhesion of Magnetron Sputtered Films

Factors Affecting the Adhesion of Magnetron Sputtered Films

An in-depth analysis of the key factors influencing the adhesion of films prepared via magnetron sputtering technology.

Find out more
Issues in Magnetron Sputtering: Why a Glow Occurs but No Film is Deposited

Issues in Magnetron Sputtering: Why a Glow Occurs but No Film is Deposited

Analyzing factors causing no film deposition despite glow in magnetron sputtering.

Find out more