Products Lab Consumables & Materials fine ceramics Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics
Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

fine ceramics

Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Item Number : KM-G04

Price varies based on specs and customizations


Material
Zirconia
Specification
See the form
Size
Customizable
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Zirconium dioxide, chemical formula ZrO2, is the main oxide of zirconium. It is white, odorless and tasteless crystals under normal conditions, insoluble in water, hydrochloric acid and dilute sulfuric acid. Chemical properties are inactive, with high melting point, high resistivity, high refractive index and low thermal expansion coefficient, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material, and also the main high temperature resistant material. At room temperature, zirconia is the material with the highest mechanical strength and fracture toughness of all major precision ceramics. Can be used to make cutting blades, scissors and knives. With its excellent surface smoothness, the material can also be used for pump components. Also used in all electrical products, electric heating products and wear-resistant mechanical parts. Its unique resistance to crack growth and high thermal expansion make it an excellent material for joining ceramics to metals such as steel. Due to the unique properties of zirconia, it is sometimes referred to as "ceramic steel".

Detail & Parts

Zirconia insulating ceramic gasket detail 1Zirconia insulating ceramic gasket detail 2Zirconia insulating ceramic gasket detail 3Zirconia insulating ceramic gasket detail 4Zirconia insulating ceramic gasket detail 5Zirconia insulating ceramic gasket detail 6Zirconia insulating ceramic gasket detail 7

Zirconia insulating ceramic gasket detail 9Zirconia insulating ceramic gasket detail 12Zirconia insulating ceramic gasket detail 13Zirconia insulating ceramic gasket detail 14

Technical specifications

5*5 13*97 148*100 22*43 Disc Diameter:
40*40 43*43 60*60 77*77 19/20/21
52*52 50*80 120*100 120*120 25/26/32
10*10 110*110 150*150 100*100 65/70/38
101*101 140*70 20*20 25*50 115/160
130*130 15*10 70*60 80*75
42*42 56*56 50*50 125*125
55*55 112*112 158*80 196*168

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Refractory materials, high temperature and high pressure resistance
  • High surface finish
  • High mechanical strength
  • High corrosion resistance, wear resistance, high hardness, long service life, not easy to break
  • Good insulation performance, non-conductive, antistatic
  • The ceramic material itself has insulating electrical and magnetic properties
  • Can be applied to specific environments, such as acid and alkali resistance

FAQ

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.8

out of

5

Zirconia ceramic gasket is remarkable! The delivery was like lightning. It's a money-saving gem.

Cleo Gaynor

4.9

out of

5

The quality is top-notch, and the durability is off the charts! This is a testament to the technological advancements in the industry.

Ahmed Estella

4.7

out of

5

Zirconia ceramic gasket has exceeded my expectations. It's a reliable partner in my lab.

Isabella Page

4.6

out of

5

The zirconia ceramic gasket is a game-changer. It's durable and withstands extreme conditions like a champ.

Liam Lucas

4.8

out of

5

I'm thrilled with the zirconia ceramic gasket. It's an excellent choice for insulation and resists wear and tear like a boss.

Olivia Harper

4.9

out of

5

The delivery was incredibly fast, and the zirconia ceramic gasket is a perfect fit for my needs. I highly recommend it!

Henry Oliver

4.7

out of

5

The zirconia ceramic gasket is an absolute steal. It's affordable, durable, and performs like a charm. I'm sold!

Amelia Jackson

4.6

out of

5

The zirconia ceramic gasket is a technological marvel. It's a must-have for any lab that values precision and durability.

Lucas Alexander

4.8

out of

5

The zirconia ceramic gasket has revolutionized my lab work. It's a testament to the power of innovation and quality.

Ava Roberts

4.9

out of

5

I'm amazed by the zirconia ceramic gasket. Its durability and insulating properties are second to none. A true game-changer!

Harper Noah

4.7

out of

5

The zirconia ceramic gasket has exceeded my expectations. It's a perfect blend of quality, durability, and affordability.

Isabella Amelia

4.6

out of

5

The zirconia ceramic gasket is an exceptional product. It's a must-have for any lab that demands precision and reliability.

Liam Benjamin

4.8

out of

5

The zirconia ceramic gasket is a remarkable innovation. It's a testament to the advancements in materials science.

Olivia Chloe

PDF - Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Engineering Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Precision Machined Yttria Stabilized Zirconia Ceramic Plate for Engineering Advanced Fine Ceramics

Precision Machined Yttria Stabilized Zirconia Ceramic Plate for Engineering Advanced Fine Ceramics

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Zirconia ceramic tweezers are a high-precision tool made of advanced ceramic materials, especially suitable for operating environments that require high precision and corrosion resistance. This type of tweezers not only has excellent physical properties, but is also popular in the medical and laboratory fields because of its biocompatibility.

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Silicon Carbide (SIC) Ceramic Sheet Flat Corrugated Heat Sink for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Flat Corrugated Heat Sink for Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic heat sink not only does not generate electromagnetic waves, but also can isolate electromagnetic waves and absorb part of electromagnetic waves.

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

Related Articles

Understanding Zirconia Ceramic Cold Isostatic Pressing

Understanding Zirconia Ceramic Cold Isostatic Pressing

In the world of manufacturing, one technique that has gained significant popularity is Zirconia Ceramic Cold Isostatic Pressing (CIP). it's a process that involves applying high-pressure fluid or gas to shape and form ceramic materials.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Optical Quartz Plate: A Comprehensive Guide to Applications, Specifications, and Usage

Discover the versatility of optical quartz plates, exploring their uses in various industries, key specifications, and factors that differentiate them from glass. Gain insights into their applications in ultraviolet transmission, precision optics, and more.

Find out more
Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Precautions when installing MoSi2 heating elements

Find out more
Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Discover the remarkable characteristics and diverse applications of optical quartz plates, including their superior ultraviolet transmission, thermal stability, and use in lenses, lighting devices, and semiconductor manufacturing.

Find out more
Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Understanding Quartz Electrolytic Cells: Applications, Mechanisms, and Advantages

Explore the detailed workings, applications, and benefits of quartz electrolytic cells in various industries. Learn how these cells facilitate precise chemical reactions and their role in high-purity metal production.

Find out more
Dental Furnaces The Perfect Solution for Porcelain Processing

Dental Furnaces The Perfect Solution for Porcelain Processing

The dental furnaces are designed explicitly for the firing process of dental porcelain, which is a crucial step in the dental restoration process.

Find out more
Comprehensive Overview of Zirconia Ceramic Materials

Comprehensive Overview of Zirconia Ceramic Materials

A detailed exploration of zirconia ceramics, including properties, history, preparation, molding, sintering, and applications.

Find out more
Zirconia Ceramic Sintering Processes and Common Issues

Zirconia Ceramic Sintering Processes and Common Issues

An in-depth look at various sintering methods for zirconia ceramics and common problems encountered during the process.

Find out more
Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

A comparison of isostatic pressing and dry pressing in zirconia ceramic rod production, highlighting differences and advantages.

Find out more
Research on Zirconia Ceramics in Dental Restoration

Research on Zirconia Ceramics in Dental Restoration

Explores the properties, preparation, and advantages of zirconia ceramics in dental restoration.

Find out more
Understanding Oxide Ceramics: Concepts, Classification, and Applications

Understanding Oxide Ceramics: Concepts, Classification, and Applications

This article delves into the concept, classification, and diverse applications of oxide ceramics, highlighting their significance in various high-tech fields.

Find out more