Products Lab Consumables & Materials fine ceramics Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum
Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

fine ceramics

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Item Number : KM-C05

Price varies based on specs and customizations


Material
Aluminum oxide
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application   

Fine corundum alumina sagger, also known as the ceramic setter, is an essential tool for transporting and carrying the fired ceramic body in the ceramic kiln. These plates are made of high-purity corundum and mullite as the main raw materials. By combining the excellent properties of the two materials, a high temperature composite backing plate was created that offers numerous advantages and features for ceramic kiln operations. In this article, we will explore the advantages and functions of fine corundum plates in more detail.

  • The carrier of fired ceramics: the main function of the fine corundum plate is to serve as the carrier, heat preservation and transportation of fired ceramics. These plates facilitate uniform heating of ceramic products, thereby increasing heat transfer rates and energy efficiency.
  • Ultra-high temperature applications: In ultra-high temperature electric kilns and electric furnaces, fine corundum plates are commonly used as push plates, bearing plates, and sagger plates. Their ability to withstand extreme temperatures makes them suitable for such applications.
  • High-temperature sintering of industrial ceramics: This plate is suitable for the pollution-free high-temperature sintering process of industrial ceramics. They are used in the sintering of magnetic materials, powder metallurgy, ceramic substrates and zirconia ceramics, ensuring reliable and controlled sintering conditions.
  • Sintering of electronic components: Fine corundum plates are also used for sintering of electronic components such as MLCC (multilayer ceramic capacitors), LTCC (low temperature co-fired ceramics), PTC (positive temperature coefficient) chip resistors, and capacitors. These plates provide the right environment for the precise sintering of these components, ensuring their quality and functionality.
  • These plates act as a carrier for fired ceramics, improving heat transfer, energy efficiency and firing speed. They are also used in ultra-high temperature applications, sintering of technical ceramics and sintering of electronic components. use of thin rope.

Detail & Parts

High temperature vessel detail 1

fine striped sagger 100x100x13mm95 105x105x12mm99

High temperature vessel detail 2

fine striped sagger 103x103x22mm 118x100x19mm

High temperature vessel detail 3

fine striped sagger 120x120x40mm 195x100x32mm

High temperature vessel detail 4

Fine corundum burning table 100x100x15mm95 aluminum oxide - notched 105x105x12mm99 aluminum oxide - notched

High temperature vessel detail 5

Fine corundum burning table 250*250mm

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • High operating temperature: This high temperature resistance ensures their reliability and stability during sintering.
  • Excellent Thermal Shock Stability: They can withstand rapid temperature changes without cracking or fracturing.
  • Low coefficient of expansion: ensures dimensional stability and prevents warping or deformation of fired ceramic products.
  • High Bending Strength: This strength ensures the durability and longevity of the mounting plate.
  • Ideal softening properties under high temperature loads: fine corundum sheets retain their structural integrity and retain their shape even under high temperature loads. This feature allows for consistent and reliable performance throughout the firing process.
  • Long service life: The fine corundum plate has a long comprehensive service life. This longevity reduces the need for frequent replacements, resulting in cost savings for the kiln operator.

In summary, the fine corundum plate has the advantages of high working temperature, good thermal shock stability, low expansion coefficient, high bending strength, ideal high temperature load softening performance, and long service life.

FAQ

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.8

out of

5

The Alumina Ceramic Saggar has exceeded my expectations. Its exceptional quality and durability make it an indispensable tool for our ceramic kiln operations.

Dharamjot Singh

4.9

out of

5

I highly recommend the Alumina Ceramic Saggar. Its high operating temperature and excellent thermal shock stability have significantly improved our sintering process.

Maria Rodriguez

4.7

out of

5

The Fine Corundum Burning Table has been a game-changer for our electronic component sintering. Its precise temperature control ensures consistent and reliable results.

Hiroshi Tanaka

4.8

out of

5

The long service life of the Fine Corundum Plate has saved us both time and money. Its durability is truly impressive.

Amina Patel

4.9

out of

5

The Alumina Ceramic Saggar has revolutionized our ceramic kiln operations. Its ability to withstand rapid temperature changes has minimized defects and improved product quality.

Lucas Schmidt

4.7

out of

5

The Fine Corundum Plate's high bending strength ensures the longevity of our kiln operations. It's a reliable and durable investment.

Isabella Garcia

4.8

out of

5

The Alumina Ceramic Saggar's low coefficient of expansion has significantly reduced warping and deformation of our fired ceramic products. It's a valuable addition to our kiln.

Oliver Chen

4.9

out of

5

The Fine Corundum Burning Table's ideal softening properties under high temperature loads have improved the consistency and reliability of our sintering process.

Sophia Khan

4.7

out of

5

The Alumina Ceramic Saggar's high-purity and high-temperature characteristics have taken our ceramic kiln operations to the next level.

Jackson Kim

4.8

out of

5

The Fine Corundum Plate's excellent thermal shock stability has eliminated cracking and fracturing during temperature changes. It's a game-changer for our sintering process.

Emma White

4.9

out of

5

The long service life of the Fine Corundum Plate has saved us both time and money. It's a cost-effective and reliable solution for our kiln operations.

Liam Brown

4.7

out of

5

The Alumina Ceramic Saggar's high operating temperature ensures the reliability and stability of our sintering process. It's a crucial tool for our ceramic kiln operations.

Ava Johnson

4.8

out of

5

The Fine Corundum Burning Table's precise temperature control has improved the quality and consistency of our electronic components. It's a valuable addition to our manufacturing process.

Jayden Smith

4.9

out of

5

The Fine Corundum Plate's bending strength ensures the longevity of our kiln operations. It's a durable and reliable investment.

Isabella Garcia

4.7

out of

5

The Alumina Ceramic Saggar's low coefficient of expansion has significantly reduced warping and deformation of our fired ceramic products. It's a valuable addition to our kiln.

Oliver Chen

4.8

out of

5

The Fine Corundum Burning Table's ideal softening properties under high temperature loads have improved the consistency and reliability of our sintering process.

Sophia Khan

4.9

out of

5

The Alumina Ceramic Saggar's high-purity and high-temperature characteristics have taken our ceramic kiln operations to the next level.

Jackson Kim

4.7

out of

5

The Fine Corundum Plate's excellent thermal shock stability has eliminated cracking and fracturing during temperature changes. It's a game-changer for our sintering process.

Emma White

4.8

out of

5

The long service life of the Fine Corundum Plate has saved us both time and money. It's a cost-effective and reliable solution for our kiln operations.

Liam Brown

PDF - Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Engineering Ceramics

Download

Catalog of Fine Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Advanced Engineering Fine Ceramics Low Temperature Alumina Granulation Powder

Advanced Engineering Fine Ceramics Low Temperature Alumina Granulation Powder

Low temperature alumina granulation powder is a kind of alumina particles produced by a special low temperature process, designed to meet the needs of temperature sensitive applications. This material has excellent low temperature performance and good processing characteristics, suitable for a variety of industries that require low temperature processing and treatment.

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Precision Machined Yttria Stabilized Zirconia Ceramic Plate for Engineering Advanced Fine Ceramics

Precision Machined Yttria Stabilized Zirconia Ceramic Plate for Engineering Advanced Fine Ceramics

Yttrium-stabilized zirconia has the characteristics of high hardness and high temperature resistance, and has become an important material in the field of refractories and special ceramics.

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Precision Machined Silicon Nitride (SiN) Ceramic Sheet for Engineering Advanced Fine Ceramics

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Silicon Carbide (SIC) Ceramic Sheet Flat Corrugated Heat Sink for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Flat Corrugated Heat Sink for Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic heat sink not only does not generate electromagnetic waves, but also can isolate electromagnetic waves and absorb part of electromagnetic waves.

Related Articles

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Precautions when installing MoSi2 heating elements

Find out more
Ceramic Alumina Crucible for Thermal Analysis Test Containers

Ceramic Alumina Crucible for Thermal Analysis Test Containers

An in-depth guide on selecting and using ceramic alumina crucibles for thermal analysis tests, focusing on factors affecting test results.

Find out more
Advanced Technologies for Precision Ceramics

Advanced Technologies for Precision Ceramics

Explores key technologies and preparation methods for precision ceramic components, highlighting their applications and challenges.

Find out more
Alumina Crucibles in Precision Casting

Alumina Crucibles in Precision Casting

Explores the use of alumina crucibles in precision casting, focusing on their properties and advantages in high-temperature alloy melting.

Find out more
Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Explores the benefits of mullite fiber linings in high-temperature industrial furnaces, focusing on thermal stability, energy efficiency, and long-term cost savings.

Find out more
Precision Ceramics in Semiconductor Applications

Precision Ceramics in Semiconductor Applications

Exploring the use of precision ceramics in semiconductor equipment, their properties, and manufacturing processes.

Find out more
In-Depth Understanding of Zirconia Sintering Furnaces

In-Depth Understanding of Zirconia Sintering Furnaces

An exploration of zirconia sintering processes, furnace components, and optimal conditions for achieving high-quality dental restorations.

Find out more
Substances Suitable for Calcination in a High-Temperature Muffle Furnace

Substances Suitable for Calcination in a High-Temperature Muffle Furnace

An overview of materials and experiments suitable for calcination in a high-temperature muffle furnace.

Find out more
Preparation and Performance of Alumina Crucibles for Vacuum Induction Melting Furnace

Preparation and Performance of Alumina Crucibles for Vacuum Induction Melting Furnace

This article discusses the preparation process and performance benefits of alumina crucibles for vacuum induction melting furnaces, emphasizing thermal stability and long service life.

Find out more
Precision Ceramic Materials for Energy Conversion Applications

Precision Ceramic Materials for Energy Conversion Applications

Overview of various ceramic materials used in energy conversion technologies, including heaters, piezoelectric ceramics, and solid oxide fuel cells.

Find out more
Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

An in-depth look at the properties, applications, and usage of alumina crucibles in powder metallurgy processes.

Find out more
Mechanical Properties and Structural Enhancements of Ceramics

Mechanical Properties and Structural Enhancements of Ceramics

An in-depth analysis of the mechanical properties of ceramics, including strengths, weaknesses, and methods for improvement.

Find out more