Products Lab Consumables & Materials fine ceramics High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics
High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

fine ceramics

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Item Number : KM-C07

Price varies based on specs and customizations


ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Alumina oxide CeramicsTubes are often used as sheaths or housings for thermocouples (temperature sensing devices). Is a ceramic tube mainly made of aluminum oxide (aluminum oxide). Alumina ceramics have excellent high temperature resistance, mechanical strength and chemical inertness, making them suitable for a variety of industrial applications. Alumina ceramic tubes are used to protect thermocouples from harsh environments such as extreme temperatures, corrosive gases, or abrasive substances.They feature an open design and are available in single, dual, quadruple or multi-hole configurations to accommodate different thermocouple arrangements. They offer an enclosed, single-bore design that protects sensitive thermocouple wires from harsh environments while allowing accurate temperature measurements.

  • Thermocouple protection: Alumina ceramic tubes are widely used as protective sleeves for thermocouples in various industries, including metal refining, glass manufacturing, chemical processing, power generation, etc.
  • Furnace and Kiln Applications: These tubes are used as components in high temperature furnaces, kilns and heating systems where they provide insulation and protect sensitive components from harsh environments.
  • Semiconductor industry: Alumina ceramic tubes are used in semiconductor manufacturing processes such as chemical vapor deposition (CVD) or physical vapor deposition (PVD), where accurate temperature measurement is critical.
  • Laboratory equipment: Can be used in laboratory environments for high temperature experiments, sample preparation or as protection for sensitive measuring equipment.

Detail & Parts

High temperature aluminum protection tube detail 1
High temperature alumina protection tube

High temperature alumina protection tube detail 2High temperature alumina protection tube detail 3

High temperature alumina protection tube detail 4High temperature alumina protection tube detail 5

High temperature alumina protection tube detail 6

High temperature alumina protection tube detail 7
Alumina ceramic tube thermocouple protection tube double hole

Technical specifications

High temperature alumina protection tube

Ф1*Ф0.3mm (double holes) Ф3*Ф0.7mm (double holes) Ф2*0.4mm (four holes)
Ф1.5*Ф0.5mm (double hole) Ф5*Ф1.5mm (double holes) Ф4*Ф1mm (four holes)
Ф2*Ф0.5mm (double hole) Ф5.5*Ф1.5mm (double holes) Ф5*Ф1.2mm (four holes)
Ф2.5*Ф0.7mm (double holes) Ф8*Ф2mm (double holes) Ф8*Ф2mm (four holes)

Alumina ceramic tube thermocouple protection tube double hole

Ф1*0.3mm Ф2*0.3mm Ф3*0.7mm Ф4*1.5mm Ф5.5*1.5mm Ф8*2mm
Ф1.2*0.3mm Ф2*0.5mm Ф3.5*0.8mm Ф4.5*1.2mm Ф6*1.8mm Ф8*2.4mm
Ф1.4*0.4mm Ф2*0.6mm Ф3.5*1mm Ф5*1.2mm Ф6.5*1.8mm Ф10*2.7mm
Ф1.5*0.4mm Ф2.5*0.7mm Ф4*1.2mm Ф5*1.5mm Ф6.5*2mm Ф7*2mm

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • High temperature resistance: Alumina ceramics can withstand extremely high temperatures, typically up to 1800°C (3272°F), which makes it suitable for applications involving high temperatures or rapid temperature changes.
  • Mechanical Strength: Alumina ceramic tubes exhibit excellent mechanical properties, including high hardness, stiffness, wear resistance, and impact resistance. They can withstand thermal shock and mechanical stress commonly found in industrial environments.
  • Chemical inertness: Alumina ceramics are chemically stable and resistant to most acids, alkalis and corrosive gases. This makes it ideal for protecting thermocouples in aggressive chemical environments or in processes involving strong acids or bases.
  • Electrical Insulation: Alumina ceramic is an electrical insulator, which means it does not conduct electricity. This characteristic is very important when using thermocouples to measure temperature in live environments.

FAQ

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.8

out of

5

The quality of this alumina tube is top-notch. It's durable and can withstand high temperatures, making it perfect for my lab's needs.

Martin Maestri

4.9

out of

5

The alumina tube arrived quickly and in perfect condition. It's exactly what I needed for my research project.

Olivia O'Brien

4.7

out of

5

I'm impressed with the value for money of this alumina tube. It's affordable and works just as well as more expensive brands.

Lucas Lane

4.8

out of

5

The alumina tube is a great addition to my lab equipment. It's easy to use and clean, and it helps me get accurate results.

Emma Edwards

4.9

out of

5

The alumina tube is a must-have for any lab that works with high temperatures. It's durable and reliable, and it helps protect my equipment.

Oscar Olsen

4.7

out of

5

I'm very satisfied with the alumina tube. It's well-made and has helped me improve the accuracy of my experiments.

Ava Anderson

4.8

out of

5

The alumina tube is a great value for money. It's affordable and works just as well as more expensive brands.

Liam Brown

4.9

out of

5

The alumina tube is a great addition to my lab equipment. It's easy to use and clean, and it helps me get accurate results.

Isabella Garcia

4.7

out of

5

The alumina tube is a must-have for any lab that works with high temperatures. It's durable and reliable, and it helps protect my equipment.

Mateo Hernandez

4.8

out of

5

I'm very satisfied with the alumina tube. It's well-made and has helped me improve the accuracy of my experiments.

Mia Morales

4.9

out of

5

The alumina tube is a great value for money. It's affordable and works just as well as more expensive brands.

Emma Rodriguez

4.7

out of

5

The alumina tube is a great addition to my lab equipment. It's easy to use and clean, and it helps me get accurate results.

Oliver Smith

4.8

out of

5

The alumina tube is a must-have for any lab that works with high temperatures. It's durable and reliable, and it helps protect my equipment.

Amelia Jones

4.9

out of

5

I'm very satisfied with the alumina tube. It's well-made and has helped me improve the accuracy of my experiments.

Liam Williams

4.7

out of

5

The alumina tube is a great value for money. It's affordable and works just as well as more expensive brands.

Isabella Garcia

4.8

out of

5

The alumina tube is a great addition to my lab equipment. It's easy to use and clean, and it helps me get accurate results.

Mateo Hernandez

4.9

out of

5

The alumina tube is a must-have for any lab that works with high temperatures. It's durable and reliable, and it helps protect my equipment.

Mia Morales

4.7

out of

5

I'm very satisfied with the alumina tube. It's well-made and has helped me improve the accuracy of my experiments.

Emma Rodriguez

4.8

out of

5

The alumina tube is a great value for money. It's affordable and works just as well as more expensive brands.

Oliver Smith

PDF - High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Engineering Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Zirconia insulating ceramic gasket has high melting point, high resistivity, low thermal expansion coefficient and other properties, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

1700℃ Laboratory Quartz Tube Furnace with Alumina Tube Tubular Furnace

1700℃ Laboratory Quartz Tube Furnace with Alumina Tube Tubular Furnace

Looking for a high-temperature tube furnace? Check out our 1700℃ Tube Furnace with Alumina Tube. Perfect for research and industrial applications up to 1700C.

1400℃ Laboratory Quartz Tube Furnace with Alumina Tube Tubular Furnace

1400℃ Laboratory Quartz Tube Furnace with Alumina Tube Tubular Furnace

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Hexagonal Boron Nitride HBN Ceramic Ring

Hexagonal Boron Nitride HBN Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Boron Nitride (BN) Ceramic Rod for High Temperature Applications

Boron Nitride (BN) Ceramic Rod for High Temperature Applications

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

High Temperature Muffle Oven Furnace for Laboratory Debinding and Pre Sintering

High Temperature Muffle Oven Furnace for Laboratory Debinding and Pre Sintering

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Zirconia ceramic tweezers are a high-precision tool made of advanced ceramic materials, especially suitable for operating environments that require high precision and corrosion resistance. This type of tweezers not only has excellent physical properties, but is also popular in the medical and laboratory fields because of its biocompatibility.

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Related Articles

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Precautions when installing MoSi2 heating elements

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Overview of alumina ceramics' applications and manufacturing methods, including molds, isostatic pressing, and green body formation.

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

This article discusses the applications and manufacturing techniques of advanced alumina ceramics, including molds, isostatic pressing, and green bodies.

Find out more
Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Explores the benefits of mullite fiber linings in high-temperature industrial furnaces, focusing on thermal stability, energy efficiency, and long-term cost savings.

Find out more
Understanding Oxide Ceramics: Concepts, Classification, and Applications

Understanding Oxide Ceramics: Concepts, Classification, and Applications

This article delves into the concept, classification, and diverse applications of oxide ceramics, highlighting their significance in various high-tech fields.

Find out more
Precision Ceramic Materials for Energy Conversion Applications

Precision Ceramic Materials for Energy Conversion Applications

Overview of various ceramic materials used in energy conversion technologies, including heaters, piezoelectric ceramics, and solid oxide fuel cells.

Find out more
Ceramic Alumina Crucible for Thermal Analysis Test Containers

Ceramic Alumina Crucible for Thermal Analysis Test Containers

An in-depth guide on selecting and using ceramic alumina crucibles for thermal analysis tests, focusing on factors affecting test results.

Find out more
Advancements in Engineering Ceramic Materials

Advancements in Engineering Ceramic Materials

Explores new engineering ceramics with exceptional properties and applications in harsh environments, comparing them to traditional materials.

Find out more
Choosing the Right Thermocouple for Heat Treatment Processes

Choosing the Right Thermocouple for Heat Treatment Processes

A guide to selecting the appropriate thermocouple for heat treatment processes based on standards and application requirements.

Find out more
Inorganic Non-Metallic Materials: Crucibles

Inorganic Non-Metallic Materials: Crucibles

An overview of crucibles made from various inorganic non-metallic materials, their uses, technical parameters, and advantages.

Find out more
Preparation Methods for High Purity Aluminum Oxide

Preparation Methods for High Purity Aluminum Oxide

An overview of various methods to produce high purity aluminum oxide, including hydrolysis, pyrolysis, modified Bayer, precipitation, baking, sol-gel, and spark discharge methods.

Find out more
Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Preventing Sample Bonding in Aluminum Oxide Crucible Sintering

Strategies to prevent sample bonding during sintering in aluminum oxide crucibles.

Find out more