Products Lab Consumables & Materials Thin Film Deposition Parts Boron Nitride (BN) Ceramic Rod for High Temperature Applications
Boron Nitride (BN) Ceramic Rod for High Temperature Applications

Thin Film Deposition Parts

Boron Nitride (BN) Ceramic Rod for High Temperature Applications

Item Number : KM-D4

Price varies based on specs and customizations


Material
Boron nitride
Specification
Ф10-100mm*100-300mm
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Hexagonal boron nitride is a multifunctional ceramic material composed of equal amounts of boron and nitrogen atoms, which is heat and chemical resistant. It is the strongest boron nitride crystal type along with graphite. Boron nitrogen ceramic rods have the advantages of good chemical properties, good thermal conductivity, low thermal expansion, and microwave transparency. Boron nitride rods can also be machined quickly. Also, glass, salt, and other liquid metals are non-wetting. This ensures that all compounds will not get wet and are more resistant to chemical attack.

  • Evaporation boat
  • Non-ferrous metal metallurgy nozzle
  • Electrical Insulators in Vacuum Systems
  • Insulator for high temperature furnace
  • Gasket for glass melting

Detail & Parts

Boron nitrogen ceramic rod details 1

Boron nitrogen ceramic rod details 2Boron nitrogen ceramic rod details 3Boron nitrogen ceramic rod details 4

Boron nitrogen ceramic rod details 4

Technical specifications

diameter and length 10-100mm*100-300mm

The products we display are available in different sizes and custom sizes are available upon request.

Advantages

  • Easy to process
  • Low wettability to molten metal
  • Low dielectric constant
  • High dielectric strength
  • High thermal conductivity and low thermal expansion
  • High thermal shock resistance
  • Extremely high operating temperature (>3000°C) with inert gas protection

FAQ

What Are The Applications Of Boron Nitride Ceramic Parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What Are The Advantages Of Using Boron Nitride Ceramic Parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

What Considerations Should Be Made When Selecting Boron Nitride Ceramic Parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What Manufacturing Processes Are Used To Produce Boron Nitride Ceramic Parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.
View more faqs for this product

4.8

out of

5

The BN Ceramic Rod I bought from KINTEK SOLUTION arrived promptly and in perfect condition. I can't wait to try it!

Bernardo Cruz

4.7

out of

5

I'm incredibly impressed with the quality of the BN Ceramic Rod. It's exactly what I needed for my research project.

Aisha Patel

4.9

out of

5

The durability of this BN Ceramic Rod is outstanding. It's been through multiple experiments and still performs like new.

Ricardo Rossi

4.6

out of

5

I highly recommend the BN Ceramic Rod from KINTEK SOLUTION. It's an excellent choice for high-temperature applications.

Sophia Khan

5.0

out of

5

This BN Ceramic Rod is top-notch. Its technological advancement is impressive, making it a must-have for any laboratory.

Liam Brown

4.8

out of

5

The BN Ceramic Rod from KINTEK SOLUTION is a game-changer. Its unique properties make it perfect for my research.

Isabella Garcia

4.7

out of

5

I'm thoroughly satisfied with the value for money I got with the BN Ceramic Rod. It exceeds my expectations in terms of performance and durability.

Oliver Chen

4.9

out of

5

The fast delivery of the BN Ceramic Rod was a pleasant surprise. Kudos to KINTEK SOLUTION for their exceptional service.

Amelia White

4.6

out of

5

The BN Ceramic Rod is an excellent investment for any laboratory. Its versatility and reliability make it a must-have.

Lucas Kim

5.0

out of

5

I'm blown away by the quality and performance of the BN Ceramic Rod. It's a testament to KINTEK SOLUTION's commitment to excellence.

Harper Jones

4.8

out of

5

The BN Ceramic Rod has proven to be an invaluable asset in my laboratory. Its durability and resistance to high temperatures are remarkable.

Jackson Smith

PDF - Boron Nitride (BN) Ceramic Rod for High Temperature Applications

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Boron Nitride Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

5L Heating Chilling Circulator Cooling Water Bath Circulator for High and Low Temperature Constant Temperature Reaction

5L Heating Chilling Circulator Cooling Water Bath Circulator for High and Low Temperature Constant Temperature Reaction

KinTek KCBH 5L Heating Chilling Circulator - Ideal for labs and industrial conditions with multi-functional design and reliable performance.

20L Heating Chilling Circulator Cooling Water Bath Circulator for High and Low Temperature Constant Temperature Reaction

20L Heating Chilling Circulator Cooling Water Bath Circulator for High and Low Temperature Constant Temperature Reaction

Maximize lab productivity with KinTek KCBH 20L Heating Chilling Circulator. Its all-in-one design offers reliable heating, chilling, and circulating functions for industrial and lab use.

Double-Layer Water Bath Electrolytic Electrochemical Cell

Double-Layer Water Bath Electrolytic Electrochemical Cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

Molybdenum Tungsten Tantalum Evaporation Boat for High Temperature Applications

Molybdenum Tungsten Tantalum Evaporation Boat for High Temperature Applications

Evaporation boat sources are used in thermal evaporation systems and are suitable for depositing various metals, alloys and materials. Evaporation boat sources are available in different thicknesses of tungsten, tantalum and molybdenum to ensure compatibility with a variety of power sources. As a container, it is used for vacuum evaporation of materials. They can be used for thin film deposition of various materials, or designed to be compatible with techniques such as electron beam fabrication.

Aluminized Ceramic Evaporation Boat for Thin Film Deposition

Aluminized Ceramic Evaporation Boat for Thin Film Deposition

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Optical Window Glass Substrate Wafer CaF2 Substrate Window Lens

Optical Window Glass Substrate Wafer CaF2 Substrate Window Lens

A CaF2 window is an optical window made of crystalline calcium fluoride. These windows are versatile, environmentally stable and resistant to laser damage, and they exhibit a high, stable transmission from 200 nm to about 7 μm.

Related Articles

CVD furnace for the growth of carbon nanotubes

CVD furnace for the growth of carbon nanotubes

Chemical vapor deposition (CVD) furnace technology is a widely used method for growing carbon nanotubes.

Find out more
Hexagonal Boron Nitride: Enhancing Performance in Composite Ceramic Materials

Hexagonal Boron Nitride: Enhancing Performance in Composite Ceramic Materials

Explores the role of h-BN in various composite ceramics, highlighting its properties and applications.

Find out more
Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Precautions when installing MoSi2 heating elements

Find out more
Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

A detailed comparison of pyrolytic graphite and pyrolytic boron nitride crucibles, focusing on their preparation processes, characteristics, and applications.

Find out more
Guidelines for the Use of Boron Nitride Crucibles

Guidelines for the Use of Boron Nitride Crucibles

Instructions on the proper use, precautions, and compatibility of boron nitride crucibles.

Find out more
Introduction to Various Ceramic Crucibles

Introduction to Various Ceramic Crucibles

An overview of different types of ceramic crucibles, their properties, and applications.

Find out more
Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Common Problems and Considerations in Graphite Rods for Vacuum Sintering Furnaces

Discusses the selection, performance, installation, and maintenance of graphite rods in vacuum sintering furnaces.

Find out more
Graphite Boats in PECVD for Cell Coating

Graphite Boats in PECVD for Cell Coating

Exploring the use of graphite boats in PECVD for efficient cell coating.

Find out more
Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

Zirconia Ceramic Rod Production Processes: Isostatic Pressing vs. Dry Pressing

A comparison of isostatic pressing and dry pressing in zirconia ceramic rod production, highlighting differences and advantages.

Find out more
Structure and Properties of High-Temperature Engineering Ceramics

Structure and Properties of High-Temperature Engineering Ceramics

Explore the applications, structural features, and performance advantages of high-temperature engineering ceramics across various industries.

Find out more