Products Lab Consumables & Materials fine ceramics Arc-shaped alumina ceramic crucible/high temperature resistant
Arc-shaped alumina ceramic crucible/high temperature resistant

fine ceramics

Arc-shaped alumina ceramic crucible/high temperature resistant

Item Number : KM-C016

Price varies based on specs and customizations


Material
99% Alumina
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The arc-shaped alumina ceramic crucible is renowned for its high-temperature resistance and durability, primarily used in industrial applications for melting and processing metals like stainless steel and nickel alloys. Made from high-purity aluminum oxide (Al2O3 > 99%), this crucible exhibits excellent thermal conductivity and shock resistance, capable of withstanding temperatures up to 1800°C for short-term use. Its robust acid and alkali resistance makes it ideal for handling various chemical compounds, excluding alkaline substances and hydrofluoric acid. Despite its high cost, the crucible's superior mechanical strength and insulation properties make it a preferred choice in high-temperature industrial processes.

Applications

Arc-shaped alumina ceramic crucibles are highly specialized containers designed for high-temperature applications, particularly in environments where resistance to thermal shock and chemical inertness are critical. These crucibles are ideal for a variety of industrial and laboratory processes where maintaining the integrity of the sample or material is paramount.

  • Metallurgical Industry: Used for melting and alloying metals, especially in the production of stainless steel and nickel alloys.
  • Ceramic Manufacturing: Suitable for high-temperature sintering and firing of ceramic materials.
  • Chemical Processing: Employed in reactions involving acidic substances, such as K2S2O7, where resistance to corrosion is necessary.
  • Research and Development: Used in laboratories for experiments requiring high-temperature stability and inertness to various atmospheres.
  • Glass Industry: Can be used in the production of specialty glasses that require high-temperature processing.
  • Refractory Applications: Used in environments where high-temperature insulation properties and mechanical strength are required.

These crucibles are particularly noted for their ability to operate in both oxidizing and reducing atmospheres up to temperatures of 1750°C, making them versatile tools in high-temperature applications.

Features

Alumina ceramic crucibles are renowned for their exceptional high-temperature resistance and chemical stability, making them ideal for various high-temperature applications in laboratory and industrial settings. These crucibles offer several key benefits that enhance their utility and efficiency in handling demanding processes.

  • Metallurgical Industry: Used for melting and alloying metals, especially in the production of stainless steel and nickel alloys.
  • Ceramic Manufacturing: Suitable for high-temperature sintering and firing of ceramic materials.
  • Chemical Processing: Employed in reactions involving acidic substances, such as K2S2O7, where resistance to corrosion is necessary.
  • Research and Development: Used in laboratories for experiments requiring high-temperature stability and inertness to various atmospheres.
  • Glass Industry: Can be used in the production of specialty glasses that require high-temperature processing.
  • Refractory Applications: Used in environments where high-temperature insulation properties and mechanical strength are required.

These features collectively make the arc-shaped alumina ceramic crucible a robust and reliable choice for high-temperature applications, particularly in industries and laboratories where precision and material purity are critical.

Details & Parts

Arc Shape Alumina Ceramic Crucible

Arc Shape Alumina Ceramic Crucible

Arc Shape Alumina Ceramic Crucible

Regular

Regular

Thickened and heightened

Thickened and heightened

With mouth

Funnel type

Funnel type

With window

With window

Technical specifications

Ordinary:

Model Upper diameter(mm) Bottom diameter(mm) Wall thickness(mm) Height(mm)
3ml 20 17 1.5 16
4ml 25 19 1.5 18
5ml 25 17 1.5 21
10ml 30 21 2 28
15ml 36 21 2 28
20ml 38 24 2.5 34
25ml 39 25 2.5 39
30ml 45 27 2.5 40
40ml 45 30 3 46
50ml 50 32 3 49
100ml 62 36 3 60
150ml 75 45 3 70
300ml 100 50 5 85

Thickened/heightened:

Model Upper diameter(mm) Bottom diameter(mm) Wall thickness(mm) Height(mm)
10ml 28 19 2 33
15ml 34 22 2 33
20ml 35 24 2.5 40
30ml 39 25 2.5 48
50ml 50 30 3 63
100ml 58 36 3 70
150ml 66 40 4 76
200ml 70 47 4 88
300ml 83 50 4 106
460ml 85 55 4 130
500ml 100 62 4.5 116
700ml 111 75 6 128
1000ml 120 80 6 150
1300ml 130 85 5 155
1500ml 140 85 5 175
2300ml 165 110 5 153
3500ml 220 120 8 150

Advantages

  • Exceptional High-Temperature Performance: The 85% alumina ceramic crucible can operate under a reduction-oxidation atmosphere at temperatures ranging from 1290℃ to 1350℃, showcasing its superior high-temperature insulation properties and mechanical strength. This makes it ideal for long-term use in stable environments with minimal temperature fluctuations.
  • Superior Thermal Conductivity and Low Thermal Expansion: With a large thermal conductivity and low thermal expansion, this crucible ensures efficient heat distribution and minimal risk of thermal shock, enhancing its durability and reliability in high-temperature applications.
  • High Purity and Chemical Resistance: The crucible boasts an Al2O3 content greater than 99%, providing excellent chemical resistance and stability against acid and alkali erosion, making it suitable for handling a wide range of reactive materials.
  • Resistance to Rapid Heat and Cold: The alumina ceramic material is designed to withstand rapid temperature changes without cracking or bursting, ensuring safety and longevity even under fluctuating thermal conditions.
  • Long-Term and Short-Term Temperature Tolerance: Capable of long-term use at 1600℃ and short-term use up to 1800℃, this crucible is versatile and can handle extreme temperature demands, making it a robust choice for various high-temperature processes.
  • Anti-Oxidation Treatment: Special anti-oxidation treatments extend the crucible's service life by protecting it from oxidative degradation, ensuring consistent performance over extended periods.
  • Special Technology for Enhanced Durability: The use of special production technologies results in high bulk density and low porosity, which resist the erosion of molten aluminum and its gas particles, maintaining the crucible's integrity and effectiveness.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What are the main benefits of using an arc-shaped alumina ceramic crucible?

1. High Strength: Alumina is harder than iron or graphite, allowing it to withstand higher internal pressures due to its high thermal expansion coefficient. 2. Thermal Resistance: Alumina has a high thermal conductivity, making it easier to handle and requiring less energy to heat. 3. Thermal Shock Resistance: Alumina is resistant to electrical hazards, making it safe for use in high-temperature processes.

What are the high-temperature properties of a 99% alumina ceramic crucible?

1.High-Temperature Insulation:Excellent insulation properties and mechanical strength under reduction-oxidation atmosphere (1650℃~1700℃). 2.Thermal Conductivity:High thermal conductivity and low thermal expansion. 3.Reactivity:Does not react with air, water vapor, hydrogen, or CO even at 1700℃. Maximum working temperature is 1800℃ for short-term use.

How should I handle the heating and cooling of an alumina ceramic crucible?

Heating: Warm up the furnace chamber slowly, with a recommended heating rate of 150-300°C per hour for the first 1-1.5 hours. Cooling: Lower the temperature gradually, with a cooling rate often half of the heating rate (75-150°C per hour).

What are the advantages of using ceramic crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

What are some common uses of ceramic crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

How can I choose the right ceramic crucible for my application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

How should ceramic crucibles be handled and maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.
View more faqs for this product

4.7

out of

5

Outstanding thermal resistance, perfect for our high-temp experiments.

Hiroshi Tanaka

4.8

out of

5

Excellent value for money, durable and efficient.

Anika Patel

4.9

out of

5

Fast delivery and the quality exceeded my expectations.

Sofia Rossi

4.7

out of

5

Highly recommend for any lab needing reliable crucibles.

Liam O'Brien

4.8

out of

5

Sturdy construction, ideal for long-term high-temp use.

Elena Garcia

4.9

out of

5

Great product, handles extreme temperatures with ease.

Mohammed Al-Farsi

4.7

out of

5

Impressive thermal conductivity, saves energy in our processes.

Yuki Nakamura

4.8

out of

5

Top-notch quality, very satisfied with the purchase.

Chen Wei

4.9

out of

5

Quick shipping, the crucible is a game-changer for our lab.

Carlos Silva

4.7

out of

5

Durable and resistant to thermal shock, excellent product.

Emma Johnson

4.8

out of

5

Highly resistant to chemical corrosion, very reliable.

Nikolai Petrov

4.9

out of

5

Best crucible for high-temperature applications, highly recommend.

Aisha Ahmed

4.7

out of

5

Efficient and cost-effective, perfect for our needs.

Lucas Müller

4.8

out of

5

Superb thermal insulation properties, very pleased.

Isabella Romano

4.9

out of

5

Quick and easy to use, great for frequent lab tasks.

David Kim

4.7

out of

5

Excellent mechanical strength, handles heavy use well.

Fatima El-Sayed

4.8

out of

5

High-quality alumina, very durable and effective.

Andres Gonzales

4.9

out of

5

Perfect for our high-temp experiments, no issues at all.

Sophie Leclerc

4.7

out of

5

Great product, highly resistant to high temperatures.

Rajesh Kumar

PDF - Arc-shaped alumina ceramic crucible/high temperature resistant

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Ceramic Crucible

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Graphite evaporation crucible

Graphite evaporation crucible

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

1800℃ Muffle furnace

1800℃ Muffle furnace

KT-18 muffle furnace with Japan Al2O3 polycrystalline fibe and Silicon Molybdenum heating element, up to 1900℃, PID temperature control and 7" smart touch screen. Compact design, low heat loss, and high energy efficiency. Safety interlock system and versatile functions.

Ultra-high temperature graphitization furnace

Ultra-high temperature graphitization furnace

The ultra-high temperature graphitization furnace utilizes medium frequency induction heating in a vacuum or inert gas environment. The induction coil generates an alternating magnetic field, inducing eddy currents in the graphite crucible, which heats up and radiates heat to the workpiece, bringing it to the desired temperature. This furnace is primarily used for graphitization and sintering of carbon materials, carbon fiber materials, and other composite materials.

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace

Vertical high temperature graphitization furnace for carbonization and graphitization of carbon materials up to 3100℃.Suitable for shaped graphitization of carbon fiber filaments and other materials sintered in a carbon environment.Applications in metallurgy, electronics, and aerospace for producing high-quality graphite products like electrodes and crucibles.

Continuous graphitization furnace

Continuous graphitization furnace

High-temperature graphitization furnace is a professional equipment for graphitization treatment of carbon materials. It is a key equipment for the production of high-quality graphite products. It has high temperature, high efficiency and uniform heating. It is suitable for various high-temperature treatments and graphitization treatments. It is widely used in metallurgy, electronics, aerospace, etc. industry.

Large Vertical Graphitization Furnace

Large Vertical Graphitization Furnace

A large vertical high-temperature graphitization furnace is a type of industrial furnace used for the graphitization of carbon materials, such as carbon fiber and carbon black. It is a high-temperature furnace that can reach temperatures of up to 3100°C.

1400℃ Tube furnace with Alumina tube

1400℃ Tube furnace with Alumina tube

Looking for a tube furnace for high-temperature applications? Our 1400℃ Tube Furnace with Alumina Tube is perfect for research and industrial use.

High Thermal Conductivity Film Graphitization Furnace

High Thermal Conductivity Film Graphitization Furnace

The high thermal conductivity film graphitization furnace has uniform temperature, low energy consumption and can operate continuously.

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

Electron Beam Evaporation Coating Conductive Boron Nitride Crucible (BN Crucible)

High-purity and smooth conductive boron nitride crucible for electron beam evaporation coating, with high temperature and thermal cycling performance.

Electron Gun Beam Crucible

Electron Gun Beam Crucible

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Boron Nitride (BN) Crucible - Phosphorous Powder Sintered

Phosphorus powder sintered boron nitride (BN) crucible has a smooth surface, dense, pollution-free and long service life.

PTFE crucible/with lid

PTFE crucible/with lid

PTFE crucibles, made from pure Teflon, offer chemical inertness and resistance from -196°C to 280°C, ensuring compatibility with a wide range of temperatures and chemicals. These crucibles feature machine-finished surfaces for easy cleaning and prevention of contamination, making them ideal for precise laboratory applications.

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

Electron Beam Evaporation Coating / Gold Plating / Tungsten Crucible / Molybdenum Crucible

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Electron Beam Evaporation Graphite Crucible

Electron Beam Evaporation Graphite Crucible

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.