Products Lab Consumables & Materials fine ceramics Zirconia Ceramic Plate - Yttria Stabilized Precision Machined
Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

fine ceramics

Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Item Number : KM-G02

Price varies based on specs and customizations


Material
Zirconia (ZrO2)
Specification
Customizable
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application   

Zirconia ceramics, also known as zirconia (ZrO2) ceramics, is a new type of high-tech ceramics, which has the highest room temperature toughness and strength among all advanced ceramic materials. It also has excellent thermal insulation and low thermal conductivity. Zirconia has the highest room temperature strength and toughness among all advanced ceramic materials, high strength, wear resistance and flexibility, far exceeding most other precision engineering ceramics. When enough stabilizers are added, the high-temperature stable c-ZrO2 can be maintained until room temperature without phase transition. Therefore, conventional zirconia ceramics are zirconia ceramics with different stabilizers added, not pure zirconia products. Adding different contents and types of stabilizers can make zirconia ceramics used in different fields.

  • Structural ceramic parts: dispersion, grinding media, nozzles, ball valve seats, molds, etc.
  • Functional ceramic elements: induction heating tubes, refractories, heating elements.
  • Engineering Parts: Bolts, Nuts, Wrecking Balls.
  • Fiber Optic Connector Assemblies: Precise and reliable connections in fiber optics.
  • Ceramic Blade: Excellent hardness and sharpness for cutting applications.
  • Pumps, Pistons and Liners: Wear and corrosion resistant components.
  • Precision ball valve ball and seat: reliable performance in the valve.
  • Cutting blades and knives: hardness and wear resistance for efficient cutting.
  • Solder pins: electrical insulation and high temperature resistance in electronic devices.
  • Fiber Ferrules and Ferrules: Precise alignment and connection of optical fibers.
  • Bearings and rollers: low friction, high hardness, corrosion resistance.
  • Ceramic guide rails: wear-resistant guide rails for various industries.
  • Automotive Cooling Substrates: Thermal insulation in automotive systems.
  • Sustainable Energy: Applications in Fuel Cells and Electrolyzers.
  • LED Package: Thermal insulation and mechanical support for the LED.

Detail & Parts

Precision Machining machined Stabilized Zirconia Ceramic Plate Details1Precision Machining machined Stabilized Zirconia Ceramic Plate Details 2Precision Machining machined Stabilized Zirconia Ceramic Plate Details3Precision Machining machined Stabilized Zirconia Ceramic Plate Details4

Dimension detail drawing of precision machined machined oxide stabilized zirconia ceramic plate
Specification:100*100*3.5mm

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Highest fracture toughness among technical ceramics.
  • High mechanical strength and hardness.
  • Very good abrasion resistance.
  • Good acid and alkali resistance.
  • Low thermal conductivity.
  • Connection compatibility with steel.
  • Excellent electrical insulation.

FAQ

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

The Difference Between Zirconia And Alumina.

Zirconia toughened alumina ceramics have the characteristics of whiteness, corrosion resistance and good chemical stability. Alumina has high hardness and zirconia has good toughness. The two materials form an excellent composite material with high strength and high toughness, which is more widely used. It has high bending strength and fracture toughness at room temperature, so zirconia toughened ceramics have excellent wear resistance. The specific ratio of the two materials can be adjusted according to the actual requirements of users.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are High Purity Metals?

High purity metals are single element materials with minimal impurities, making them ideal for use in research, development, and production of advanced technologies. These metals are used in the creation of advanced ceramics, electronic sensors, high-precision lenses and optics, LEDs, lasers, thermal barrier coatings, plasma screens, and more. KINTEK offers a diverse range of high-purity metals and binary and ternary metal compounds in various forms, compositions, dispersions, particle sizes, and weights for research and commercial applications. Strategic special metals are used in high-tech applications and can be expensive due to their elaborate processing.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Are High Purity Metals Used For?

High purity metals are used in various advanced technologies that require specific properties, performance and quality. They are used to create fluorescent lighting, plasma screens, LEDs, high-precision lenses and optics, electronic sensors, advanced ceramics, thermal barrier coatings, lasers, and more. These metals are also used in the production of high-quality magnetic, thermoelectric, phosphor and semiconducting materials. KINTEK offers a diverse portfolio of high-purity metals, binary and ternary metal compounds, magnetic alloys, metal oxides, nanomaterials, and organometallic precursors in various forms, compositions, dispersions, particle sizes and weights for all research and commercial applications.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Are The Benefits Of Using High-purity Metals?

Using high-purity metals offers several benefits. First, they provide consistent and reliable performance due to the absence of impurities that can cause variations in material properties. Second, high-purity metals enable the production of high-quality and high-performance products, ensuring better functionality and durability. Third, their low impurity levels reduce the risk of contamination in sensitive applications. High-purity metals also exhibit improved electrical conductivity, thermal conductivity, and corrosion resistance. Additionally, they are often preferred for their enhanced adhesion properties, making them suitable for various coating and thin film deposition processes.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

Which Industries Commonly Use High-purity Metals?

High-purity metals find application in a wide range of industries. The semiconductor and electronics industries extensively use high-purity metals for integrated circuits, microprocessors, and other electronic components. The aerospace industry relies on high-purity metals for their lightweight and high-strength properties. Optics and photovoltaic industries utilize high-purity metals for precision optics and solar cells. High-purity metals also play a significant role in medical devices, automotive components, research laboratories, and advanced manufacturing processes.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.7

out of

5

Zirconia Ceramic Plate is a great product for its cost. I would highly recommend it to anyone looking for a precision-machined plate.

Hank Langford

4.9

out of

5

The zirconia ceramic plate delivered within the estimated delivery time. I'm very impressed with how they handled my order.

Kaden Wild

4.9

out of

5

The zirconia ceramic plate is a great value for the price. I'm very satisfied with my purchase.

Sander Williamson

4.8

out of

5

The zirconia ceramic plate is made of high quality. I'm very impressed with the quality of the product.

Kieran Zhang

4.8

out of

5

The zirconia ceramic plate is very durable. I'm very satisfied with the durability of the product.

Bradyn Moore

4.9

out of

5

This plate is a great choice for anyone looking for a high-tech solution for their projects.

Benjamín García

4.9

out of

5

The zirconia ceramic plate is very easy to use. I'm very impressed with how simple it is to use.

Kayden Lee

4.8

out of

5

KINTEK SOLUTION provides great customer service. I'm very satisfied with the customer service of the company.

Luis Martínez

4.6

out of

5

The zirconia ceramic plate is a great product for its cost. I would highly recommend it to anyone looking for a precision-machined plate.

Henry Patel

4.8

out of

5

The zirconia ceramic plate delivered within the estimated delivery time. I'm very impressed with how they handled my order.

David Thomas

4.7

out of

5

The zirconia ceramic plate is a great value for the price. I'm very satisfied with my purchase.

Joseph Hall

4.9

out of

5

The zirconia ceramic plate is made of high quality. I'm very impressed with the quality of the product.

Eliana González

4.6

out of

5

The zirconia ceramic plate is very durable. I'm very satisfied with the durability of the product.

Sophia Martin

4.8

out of

5

The zirconia ceramic plate is very easy to use. I'm very impressed with how simple it is to use.

Harper Kim

4.9

out of

5

KINTEK SOLUTION provides great customer service. I'm very satisfied with the customer service of the company.

Ethan Nguyen

4.8

out of

5

The zirconia ceramic plate is a great choice for anyone looking for a high-tech solution for their projects.

Owen Baker

PDF - Zirconia Ceramic Plate - Yttria Stabilized Precision Machined

Download

Catalog of Fine Ceramics

Download

Catalog of Engineering Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of High Pure Metals

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Zirconia Ceramic Ball - Precision Machining

Zirconia Ceramic Ball - Precision Machining

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Zirconia Ceramic Gasket - Insulating

Zirconia Ceramic Gasket - Insulating

Zirconia insulating ceramic gasket has high melting point, high resistivity, low thermal expansion coefficient and other properties, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

High Purity Zirconium Oxide (ZrO2) Sputtering Target / Powder / Wire / Block / Granule

High Purity Zirconium Oxide (ZrO2) Sputtering Target / Powder / Wire / Block / Granule

Get high-quality Zirconium Oxide (ZrO2) materials tailored to your needs. We offer a variety of shapes and sizes, including sputtering targets, powders, and more, at affordable prices.

High Purity Zirconium (Zr) Sputtering Target / Powder / Wire / Block / Granule

High Purity Zirconium (Zr) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Zirconium materials for your laboratory needs? Our range of affordable products includes sputtering targets, coatings, powders, and more, tailored to your unique requirements. Contact us today!

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Optical quartz plate JGS1 / JGS2 / JGS3

Optical quartz plate JGS1 / JGS2 / JGS3

The quartz plate is a transparent, durable, and versatile component widely used in various industries. Made from high-purity quartz crystal, it exhibits excellent thermal and chemical resistance.

Zirconium Silicon Alloy (ZrSi) Sputtering Target / Powder / Wire / Block / Granule

Zirconium Silicon Alloy (ZrSi) Sputtering Target / Powder / Wire / Block / Granule

Discover our Zirconium Silicon Alloy (ZrSi) materials for laboratory use at affordable prices. We produce tailored materials to fit your unique requirements, offering a wide range of specifications and sizes for sputtering targets, coating materials, powders, and more.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Zirconium Silver Alloy (ZrAg) Sputtering Target / Powder / Wire / Block / Granule

Zirconium Silver Alloy (ZrAg) Sputtering Target / Powder / Wire / Block / Granule

Discover affordable Zirconium Silver Alloy (ZrAg) materials for laboratory use. Our tailored solutions cater to your unique needs with varying purities, shapes, and sizes. Find sputtering targets, coatings, particles, powders, and more.

Cutting Tool Blanks

Cutting Tool Blanks

CVD Diamond Cutting Tools: Superior Wear Resistance, Low Friction, High Thermal Conductivity for Non-Ferrous Materials, Ceramics, Composites Machining

Alumina/zirconia Grinding Jar With Balls

Alumina/zirconia Grinding Jar With Balls

Grind to perfection with alumina/zirconia grinding jars and balls. Available in volume sizes from 50ml to 2500ml, compatible with various mills.

Related Articles

Understanding Zirconia Ceramic Cold Isostatic Pressing

Understanding Zirconia Ceramic Cold Isostatic Pressing

In the world of manufacturing, one technique that has gained significant popularity is Zirconia Ceramic Cold Isostatic Pressing (CIP). it's a process that involves applying high-pressure fluid or gas to shape and form ceramic materials.

Find out more
The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

The Latest Advancements in Zirconia Sintering Furnaces for Dental Applications

Zirconia sintering furnaces are designed to give dental professionals the ability to create dental restorations with the highest level of precision and accuracy.

Find out more
Top 5 Features of a High-Quality Zirconia Sintering Oven

Top 5 Features of a High-Quality Zirconia Sintering Oven

Investing in a high-quality sintering oven is crucial for dental laboratories that want to produce high-quality zirconia restorations consistently.

Find out more
Understanding the Process and Benefits of Zirconia Ceramic Cold Isostatic Pressing

Understanding the Process and Benefits of Zirconia Ceramic Cold Isostatic Pressing

Cold Isostatic Pressing (CIP) is a fascinating process that offers numerous benefits in the field of ceramic manufacturing. CIP involves the use of a high-pressure pump to generate isotropic uniform pressure on a ceramic material. The resulting uniform pressure distribution leads to enhanced density and high strength of the final product.

Find out more
Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Cold Isostatic Pressing (CIP) is a widely used manufacturing process in various industries, including ceramics, metalworking, and pharmaceuticals. It involves applying equal pressure from all directions to a material placed inside a flexible mold or bag. This process helps in achieving uniform density and shaping complex components with intricate geometries.

Find out more
Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Unlocking the Power of Optical Quartz Plates: Applications and Benefits

Delve into the world of optical quartz plates, exploring their exceptional properties, diverse applications in industries like optics, electronics, and more. Discover their advantages, including low thermal expansion, high temperature resistance, and precise optical clarity.

Find out more
How Isostatic Presses Help Eliminate Defects in Materials

How Isostatic Presses Help Eliminate Defects in Materials

Isostatic pressing is a manufacturing process that is used to eliminate defects in materials.

Find out more
Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Unveiling the Exceptional Properties and Applications of Optical Quartz Plates

Discover the remarkable characteristics and diverse applications of optical quartz plates, including their superior ultraviolet transmission, thermal stability, and use in lenses, lighting devices, and semiconductor manufacturing.

Find out more
Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Understanding Warm Isostatic Press: An Essential Tool in Electronics Manufacture

Warm Isostatic Press (WIP) equipment, also known as Warm Isostatic Laminator, is a cutting-edge technology that combines isostatic pressing with a heating element. It utilizes warm water or a similar medium to apply uniform pressure to powdered products from all directions. The process involves shaping and pressing the powder material using flexible materials as a jacket mold and hydraulic pressure as a pressure medium.

Find out more
Isostatic Pressing of Ceramics: Process and Precision

Isostatic Pressing of Ceramics: Process and Precision

When it comes to producing high-quality ceramic components, one of the most crucial processes is isostatic pressing. This technique ensures the uniformity and precision required for manufacturing ceramics used in various industries. Isostatic pressing involves carefully selecting the pressing powders and controlling the tools to achieve the desired uniformity. By understanding the process of isostatic pressing, manufacturers can ensure the production of ceramics that meet the strict standards of dimensional accuracy and performance.

Find out more
An In-depth Study of Isostatic Presses: Types, Applications, and Advantages

An In-depth Study of Isostatic Presses: Types, Applications, and Advantages

Isostatic presses play a crucial role in various industries, offering unique capabilities for material consolidation and product creation. These powerful machines apply equal pressure from all directions, resulting in products with uniform density and reduced defects. Isostatic presses are divided into two main types: Cold Isostatic Presses (CIP) and Hot Isostatic Presses (HIP). Each type functions under different conditions, allowing for a wide range of applications.

Find out more
Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing Achieving Optimal Microstructure Uniformity

Hot Isostatic Pressing(HIP ) is a technology used to densify materials at high temperatures and pressures. The process involves placing a material in a sealed container, which is then pressurized with an inert gas and heated to a high temperature.

Find out more