Products Lab Consumables & Materials fine ceramics High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation
High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

fine ceramics

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Item Number : KM-C011

Price varies based on specs and customizations


Material
Aluminum Zirconium Oxide
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application   

Alumina ceramic screws are made of high-purity alumina or silicon carbide. Known for its high hardness and strength. Withstands continuous use at temperatures up to 1,500°C. Has excellent heat resistance, chemical resistance and electrical insulation. Ceramic components can withstand extreme temperatures without significant deformation or loss of mechanical properties. They are electrically insulating and lightweight compared to metal parts.

  • Aerospace: Used for insulation, anti-interference, light weight and high temperature resistance on electronic equipment.
  • Electronics: provide insulation, anti-interference, lightweight and other properties for electronic equipment.
  • Medical equipment: non-magnetic, environmental protection, insulation, anti-interference, enhanced safety.
  • Petrochemical industry: high temperature resistance, chemical resistance, corrosion resistance, prolonging the service life of equipment.
  • Communication: insulation, non-magnetic, improve the safety of communication equipment.
  • Shipbuilding: resistant to acid, alkali and corrosion, prolonging the service life of equipment.

Other applications include:

  • Precision shafts in high wear environments.
  • Roller and ball bearings enhance performance.
  • Abrasion-resistant lining to protect equipment.
  • Semiconductor parts with high temperature resistance, electrical insulation and corrosion resistance.
  • Mechanical parts have advantages over traditional materials.
  • High temperature and high pressure electrical insulator.
  • Wire and wire conduit with insulation and temperature resistance.
  • Mechanical seals effectively seal and prevent leaks.
  • Professional applications in aerospace, automotive, electronics, semiconductor manufacturing, chemical processing and high temperature equipment.

Detail & Parts

High-quality alumina ceramic screws detail 1High-quality alumina ceramic screws detail 2High-quality alumina ceramic screws detail 3High-quality alumina ceramic screws detail 4High-quality alumina ceramic screws detail 5High-quality alumina ceramic screws detail 6High-quality alumina ceramic screws detail 7

Technical specifications

Measurement unit: L*K*Smm K:head thickness; L:thread length; S:the length of the opposite side; D:Thread Diameter/Specification.

M16 External hexagon 100*9.2*24.2 7.*9.2*24.2 40*9.2*24.2
M14 External hexagon 80*10*22 50*7.6*21.9 40*9.9*21
M12 External hexagon 75*8.1*18.8 50*10.3*18.3 25*10.3*18.4 15*10*21.2
Inner hexagon 50*10.5*17.2 35/25*10.4*17.1 15*12.2*18.1 14*12.2*18
M10 External hexagon 70*7*16.8 35*6.6*16.6
Inner hexagon 50*9*14.8 35*9.1*14.8
M8 Inner hexagon 70*5.6*14 50*4.5*11.7 35*5.3*12.9 25*5.3*12.9
Inner hexagon 50*7.6*12.3 35*7.9*12.3
Flat head inner hexagon 30*-*13.8
"+"Type 20*-*14.2
M6 External hexagon 55*5.2*9.7 40*4.3*9.6
Inner hexagon 40*5.8*9.8 25*5.9*10 15*5.9*10
"+"Type 40*-*12
Outer hexagon "__" type 25*3.9*9.8
Round head "__"type with hole 20*4.8*10
Inner hexagon 15*-*9.8
M5 External hexagon 25*3.5*8 20/15*3.6*8 10/12*3.6*7.6 5*3.6*8
Inner hexagon 35*4.7*7.8 25/20*4.9*8.1 15/12*4.9*8.1 10/5*4.9*8.1
Round head "+"type with hole 25*-*8.6 20*-*8.5 12*-*8.5
Round head Inner hexagon 25*2.*9.3 12*2.8*8.6
Round head "__" type 10*3.4*7.9
"+"Type 10*-*8.9
Round head "__" type with hole 6/15*3*10
M4 External hexagon 20*3.2*6.8 15*3.3*6.8 10*3.2*6.8
Inner hexagon 25*4*7 20*4.1*6.9 15*4.1*6.8 10*3.2*6.8
Inner hexagon 25*-*8.5
"+" Type 12*-*8.4
Round head "__" type 8*2.9*7 5*2.1*9.3
Round head "+"type with hole 3*4.5*8.9
M3.5 "+"  Type 9*-*5.3
M3 External hexagon 10*3*5.5 30*3*5.4
Inner hexagon 30*3*5.4 20/25*3*5.4 15/10*3*5.4 8*3*5.4
"+" Type 15*-*5.2 6*-*5.6
Round head "+"type 6.5*2.7*5.5
M2.5 "+" Type 9*-*4.5 6*-*3.9
M2 Flat head  "__" type half teeth 22*1.4*3.8
Inner hexagon 14*1.9*3.8
Flat head  "__" type 10*1.4*3.8
"+"thread 8*1.6*3.5
 Round head "+" type 8*1.5*3.5
External hexagon 6*1.6*3.8
"+" Type 6*-*4.2

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Good insulation performance, high temperature resistance.
  • high strength.
  • High hardness and wear resistance.
  • Low to moderate corrosion.
  • Low corrosion, high temperature resistance.
  • Excellent electrical insulation.
  • Chemical stability and corrosion resistance.
  • Meet diverse technical requirements.

FAQ

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.9

out of

5

I am impressed by their extreme wear and abrasion resistance, making them perfect for high-temperature applications.

Nelson Nelson

4.8

out of

5

I'm pleased with the low corrosion and high-temperature resistance, ensuring long-lasting performance.

Curtis Mitchell

4.7

out of

5

The delivery was incredibly fast! I received my order within just a few days, which is very impressive.

Manuel Lima

4.9

out of

5

These alumina ceramic screws are worth every penny! They are incredibly durable and have exceeded my expectations.

Liam Wilson

4.6

out of

5

The quality of these screws is top-notch, and they have significantly improved the performance of my equipment.

Isabella Garcia

4.8

out of

5

I'm amazed by the technological advancements in these screws. They are truly innovative and have solved many challenges I faced with traditional screws.

Ethan Carter

4.7

out of

5

The Alumina Ceramic Screws are a lifesaver for my high-temperature applications. They are reliable and have never failed me.

Sophia Rodriguez

4.9

out of

5

I'm blown away by the durability of these screws. I've been using them for months now, and they still look brand new.

Jackson Kim

4.6

out of

5

I highly recommend these screws for anyone working with high temperatures. They are a game-changer!

Harper Johnson

4.8

out of

5

The alumina ceramic screws arrived in perfect condition and were exactly as described. Very satisfied with the purchase.

Oliver Chen

4.7

out of

5

The screws are incredibly versatile and have found applications in various projects. Highly impressed with their adaptability.

Amelia White

4.9

out of

5

I've been using these Alumina Ceramic Screws for a while now, and they continue to perform exceptionally well. Highly recommended!

Lucas Brown

4.6

out of

5

The screws are easy to install and maintain, saving me valuable time and effort. I'm very pleased with this product.

Charlotte Davies

4.8

out of

5

I'm thrilled with the Alumina Ceramic Screws. They offer superior performance and have greatly enhanced the efficiency of my operations.

Benjamin Smith

PDF - High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Engineering Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Zirconia Ceramic Gasket Insulating Engineering Advanced Fine Ceramics

Zirconia insulating ceramic gasket has high melting point, high resistivity, low thermal expansion coefficient and other properties, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material.

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Advanced Engineering Fine Ceramics Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Sheet Wear-Resistant Engineering Advanced Fine Ceramics

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Advanced Engineering Fine Ceramics Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Advanced Engineering Fine Ceramics Low Temperature Alumina Granulation Powder

Advanced Engineering Fine Ceramics Low Temperature Alumina Granulation Powder

Low temperature alumina granulation powder is a kind of alumina particles produced by a special low temperature process, designed to meet the needs of temperature sensitive applications. This material has excellent low temperature performance and good processing characteristics, suitable for a variety of industries that require low temperature processing and treatment.

Conductive Boron Nitride BN Ceramics Composite for Advanced Applications

Conductive Boron Nitride BN Ceramics Composite for Advanced Applications

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Precision Machined Yttrium Stabilized Zirconia Ceramic Rod for Engineering Advanced Fine Ceramics

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Engineering Advanced Fine Ceramics Head Tweezers with Pointed Elbow Zirconia Ceramic Tip

Zirconia ceramic tweezers are a high-precision tool made of advanced ceramic materials, especially suitable for operating environments that require high precision and corrosion resistance. This type of tweezers not only has excellent physical properties, but is also popular in the medical and laboratory fields because of its biocompatibility.

Related Articles

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

This article discusses the applications and manufacturing techniques of advanced alumina ceramics, including molds, isostatic pressing, and green bodies.

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Overview of alumina ceramics' applications and manufacturing methods, including molds, isostatic pressing, and green body formation.

Find out more
Comprehensive Overview of Zirconia Ceramic Materials

Comprehensive Overview of Zirconia Ceramic Materials

A detailed exploration of zirconia ceramics, including properties, history, preparation, molding, sintering, and applications.

Find out more
New Rapid Sintering Technologies for Advanced Ceramics

New Rapid Sintering Technologies for Advanced Ceramics

Explores advanced ceramic materials, their properties, and various rapid sintering techniques to enhance their performance.

Find out more
Structure and Properties of High-Temperature Engineering Ceramics

Structure and Properties of High-Temperature Engineering Ceramics

Explore the applications, structural features, and performance advantages of high-temperature engineering ceramics across various industries.

Find out more
The 5 Hottest Advanced Ceramic Powders Currently Available!

The 5 Hottest Advanced Ceramic Powders Currently Available!

An overview of the top 5 advanced ceramic powders: High Purity Aluminum Oxide, Boehmite, Aluminum Nitride, Silicon Nitride, and Spherical Alumina, highlighting their applications and market trends.

Find out more
Research on Zirconia Ceramics in Dental Restoration

Research on Zirconia Ceramics in Dental Restoration

Explores the properties, preparation, and advantages of zirconia ceramics in dental restoration.

Find out more
Engineering Ceramic Materials: Applications in Aerospace, Electronic Information, New Energy, and Environmental Protection

Engineering Ceramic Materials: Applications in Aerospace, Electronic Information, New Energy, and Environmental Protection

This article explores the diverse applications of engineering ceramic materials across aerospace, electronic information, new energy, and environmental protection sectors.

Find out more
The Evolution and Strategic Importance of Advanced Ceramics

The Evolution and Strategic Importance of Advanced Ceramics

An in-depth analysis of the development, classification, and strategic importance of advanced ceramics in various industrial and technological fields.

Find out more
Precision Ceramic Materials for Energy Conversion Applications

Precision Ceramic Materials for Energy Conversion Applications

Overview of various ceramic materials used in energy conversion technologies, including heaters, piezoelectric ceramics, and solid oxide fuel cells.

Find out more
Advancements in Engineering Ceramic Materials

Advancements in Engineering Ceramic Materials

Explores new engineering ceramics with exceptional properties and applications in harsh environments, comparing them to traditional materials.

Find out more
Mechanical Properties and Structural Enhancements of Ceramics

Mechanical Properties and Structural Enhancements of Ceramics

An in-depth analysis of the mechanical properties of ceramics, including strengths, weaknesses, and methods for improvement.

Find out more