Products Lab Consumables & Materials fine ceramics Aluminum Nitride (AlN) Ceramic Sheet
Aluminum Nitride (AlN) Ceramic Sheet

fine ceramics

Aluminum Nitride (AlN) Ceramic Sheet

Item Number : KM-DG05

Price varies based on specs and customizations


Material
Silicon nitride
Specification
See the form
Size / Shape
Customizable
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Aluminum nitride (AlN) is a ceramic material with high thermal conductivity and electrical insulation capabilities. It is commonly used in electrical equipment and is resistant to erosion by molten metal. It is also a suitable replacement for beryllium oxide (BeO) in the semiconductor industry because it is non-toxic and has similar properties to the silicon wafer material.

The thermal expansion coefficient is similar to that of silicon, good light transmission performance, and non-toxic. Compared with alumina and beryllium oxide ceramics, it has high mechanical strength. Aluminum nitride (AlN) ceramics are known for their high thermal conductivity and excellent electrical insulation properties. They are suitable for a wide variety of electrical equipment and offer several advantages in industrial applications.

  • Thermal management and electrical applications requiring high thermal conductivity and electrical insulation.
  • Semiconductor devices such as ceramic trays and etch masks.
  • Chip cooling and support.
  • Aluminum nitride ceramic substrates for OLEDs.
  • Steel and semiconductor manufacturing.
  • Wafer handling and processing.
  • Crucibles for crystal growth.
  • Microelectronic devices, including substrates, insulators and chip carriers.
  • Laser thermal management components.
  • Dielectric layers in optical storage media.
  • Packaging for microwave equipment.
  • Power electronics, including electrical insulators, heat sinks, rectifiers and power modules.
  • Aerospace applications.
  • LED packages and power resistors.

Detail & Parts

Aluminum nitride ceramic sheet detail 1Aluminum nitride ceramic sheet detail 2Aluminum nitride ceramic sheet detail 3Aluminum nitride ceramic sheet detail 4Aluminum nitride ceramic sheet detail 5

Aluminum nitride ceramic sheet detail 6
14*19*1 / 20*25*1 / 22*28*1 / 29*42*1
Aluminum nitride ceramic sheet detail 7
14*0.389 / 6*30*1 / 20*25*1 / 3.6*3.6*0.385
Aluminum nitride ceramic sheet detail 8
10*10*1 / 30*30*1 / 40*400*1 / 50*50*1
Aluminum nitride ceramic sheet detail 9
101.6*101.6*0.38 / 101.6*101.6*0.635 / 114*114*0.385 / 114.3*114.3*0.635

Aluminum nitride ceramic sheet detail 11

Technical specifications

Product number Product regular size (mm)
Porous aluminum nitride ceramic sheet 14*19*1 14*19*1
20*25*1 20*25*1
22*28*1 22*28*1
29*42*1 17*22*0.6
Round140.385
Non-porous aluminum nitride ceramic sheet 6*30*1 114*114*1
20*25*1 127*127*1
3.6*3.6*0.385 139*190.5*1
10*10*1 152.4*152.4*0.6
30*30*1 152.4*152.4*1
40*40*1 165*165*1
50*50*1 25*98*0.635
1016*101.60.38 50*50*0.5
101.6*101.6*0.635 Round31*1.2
114*114*0.385 Round26*1
1143*114.30.635 Round72.6*0.6
Round15*1.5 Round45*1
Round26*1 Round45*1.5
Round30*1 Round50*1
Round35*1 Round50*2
Round40*1 Round60*1

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • High thermal conductivity enables efficient heat dissipation and improves device performance.
  • Compatibility with silicon contributes to the reliability of silicon chips and thermal cycling.
  • Excellent electrical insulation and low dielectric constant.
  • High mechanical strength, providing durability in industrial processes.
  • Corrosion resistant to molten metals.
  • Non-toxic, high purity.

FAQ

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are High Purity Metals?

High purity metals are single element materials with minimal impurities, making them ideal for use in research, development, and production of advanced technologies. These metals are used in the creation of advanced ceramics, electronic sensors, high-precision lenses and optics, LEDs, lasers, thermal barrier coatings, plasma screens, and more. KINTEK offers a diverse range of high-purity metals and binary and ternary metal compounds in various forms, compositions, dispersions, particle sizes, and weights for research and commercial applications. Strategic special metals are used in high-tech applications and can be expensive due to their elaborate processing.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Are High Purity Metals Used For?

High purity metals are used in various advanced technologies that require specific properties, performance and quality. They are used to create fluorescent lighting, plasma screens, LEDs, high-precision lenses and optics, electronic sensors, advanced ceramics, thermal barrier coatings, lasers, and more. These metals are also used in the production of high-quality magnetic, thermoelectric, phosphor and semiconducting materials. KINTEK offers a diverse portfolio of high-purity metals, binary and ternary metal compounds, magnetic alloys, metal oxides, nanomaterials, and organometallic precursors in various forms, compositions, dispersions, particle sizes and weights for all research and commercial applications.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Are The Benefits Of Using High-purity Metals?

Using high-purity metals offers several benefits. First, they provide consistent and reliable performance due to the absence of impurities that can cause variations in material properties. Second, high-purity metals enable the production of high-quality and high-performance products, ensuring better functionality and durability. Third, their low impurity levels reduce the risk of contamination in sensitive applications. High-purity metals also exhibit improved electrical conductivity, thermal conductivity, and corrosion resistance. Additionally, they are often preferred for their enhanced adhesion properties, making them suitable for various coating and thin film deposition processes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

Which Industries Commonly Use High-purity Metals?

High-purity metals find application in a wide range of industries. The semiconductor and electronics industries extensively use high-purity metals for integrated circuits, microprocessors, and other electronic components. The aerospace industry relies on high-purity metals for their lightweight and high-strength properties. Optics and photovoltaic industries utilize high-purity metals for precision optics and solar cells. High-purity metals also play a significant role in medical devices, automotive components, research laboratories, and advanced manufacturing processes.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.
View more faqs for this product

4.8

out of

5

An incredibly cost-effective solution for my lab's thermal management needs. Highly recommended!

Raul Camacho

4.9

out of

5

Excellent product! It arrived on time and met all my requirements. Great quality!

Antonia Munoz

4.7

out of

5

Impressed by its exceptional thermal conductivity and durability. It's a game-changer for my lab's research.

Pierre Dubois

4.6

out of

5

I appreciate the fast shipping and the top-notch quality of this ceramic sheet.

Mariam Ali

4.9

out of

5

The product's high thermal conductivity and electrical insulation properties are top-notch. A great choice for my lab's electrical equipment.

Oliver Chen

4.8

out of

5

The non-toxicity and high purity of this ceramic sheet make it a safe and reliable choice for my lab's applications.

Julia Rodriguez

4.7

out of

5

The custom sizes available ensure a perfect fit for my lab's specific needs. Kudos to the manufacturer!

Thomas Meier

4.6

out of

5

I'm thoroughly impressed with the corrosion resistance of this ceramic sheet. It's a perfect fit for my lab's harsh conditions.

Isabella Garcia

PDF - Aluminum Nitride (AlN) Ceramic Sheet

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of High Pure Metals

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Aluminum Nitride (AlN) Sputtering Target / Powder / Wire / Block / Granule

Aluminum Nitride (AlN) Sputtering Target / Powder / Wire / Block / Granule

High-quality Aluminum Nitride (AlN) materials in various shapes and sizes for laboratory use at affordable prices. Explore our range of sputtering targets, coatings, powders, and more. Customized solutions available.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Silicon Carbide (SIC) Ceramic Sheet Flat / Corrugated Heat Sink

Silicon Carbide (SIC) Ceramic Sheet Flat / Corrugated Heat Sink

Silicon carbide (sic) ceramic heat sink not only does not generate electromagnetic waves, but also can isolate electromagnetic waves and absorb part of electromagnetic waves.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Nickel Aluminum Alloy (NiAl) Sputtering Target / Powder / Wire / Block / Granule

Nickel Aluminum Alloy (NiAl) Sputtering Target / Powder / Wire / Block / Granule

Looking for high-quality Nickel Aluminum Alloy materials for your lab? Our experts produce and customize NiAl materials to suit your specific needs. Find a wide range of sizes and specifications for sputtering targets, coating materials, and more at affordable prices.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.