Products Lab Consumables & Materials fine ceramics Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace
Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

fine ceramics

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Item Number : KM-C01

Price varies based on specs and customizations


Material
Aluminum oxide
Specification
See form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Alumina ceramic crucibles are versatile and durable vessels for thermal analysis testing. Made of high-quality alumina ceramic, it has the characteristics of high melting point, strong hardness, good chemical stability, and can withstand extreme temperatures, corrosion and wear. Its smooth surface allows for easy sample removal, while its high thermal conductivity ensures accurate temperature readings during testing. It is a good material for high temperature resistance and chemical corrosion resistance. Alumina sample pans are widely used in thermal analysis such as DTA and DSC to provide consistent and precise results in thermal analysis tests.

  • Material Testing: Alumina ceramic crucibles for precise thermogravimetric analysis.
  • Metallurgical Processes: High-temperature and chemically resistant crucibles for smelting, casting, and refining metal alloys.
  • Environmental Testing: Acid-resistant crucibles for accurate measurement of pollutants and toxins in soil and water samples.
  • Drug Research: Crucibles used to analyze thermal properties of drug molecules, aiding in drug development.
  • Ceramic and Glass Manufacturing: Crucibles designed to withstand extreme temperatures and thermal shock for molten glass and ceramic materials during production.

Detail & Parts

Model 1 & Model 2

Square advanced alumina ceramic crucible detail 1
01
Square advanced alumina ceramic crucible detail 2
02
0.9ml(45x8x6mm) 9ml(60x30x10mm) 30ml(60x40x20mm) 185ml(80x80x40mm) 13ml(100x30x10mm) 300ml(100x100x40mm) 510ml(120x120x50mm) 800ml(200x100x50mm)
2ml(30x20x10mm) 10ml(50x20x20mm) 35ml(60x30x30mm) 75ml(90x60x20mm) 25ml(100x30x15mm) 750ml(100x100x100mm) 520ml(140x140x38mm) 2600ml(200x200x80mm)
3ml(25x15x15mm) 10ml(60x30x14mm) 40ml(50x50x25mm) 165ml(90x60x40mm) 35ml(100x30x20mm) 330ml(115x115x35mm) 425ml(150x150x30mm) 3300ml(200x200x100mm)
3.5ml(20x20x17mm) 16ml(60x30x15mm) 57ml(75x75x15mm) 200ml(90x60x45mm) 59ml(100x30x30mm) 90ml(120x60x20mm) 750ml(150x150x50mm) 3900ml(250x250x80mm)
4ml(50x20x10mm) 20ml(60x30x20mm) 68ml(65x65x25mm) 170ml(90x90x30mm) 47ml(100x40x20mm) 190ml(120x60x40mm) 1290ml(150x150x80mm) 4800ml(250x250x100mm)
5ml(30x20x17mm) 25ml(50x40x20mm) 100ml(65x65x35mm) 300ml(90x90x45mm) 110ml(100x50x30mm) 205ml(120x80x30mm) 800ml(160x160x45mm) 11000ml(330*330*120mm)
7ml(50x20x15mm) 26ml(50x25x35mm) 110ml(70x70x30mm) 22ml(100x20x20mm) 150ml(100x100x25mm) 260ml(120x80x40mm) 1460ml(180x180x60mm)

Model 3

Square advanced alumina ceramic crucible detail 3
03
3.5ml(20x20x17mm) 10ml(60x30x14mm) 25ml(100x30x20mm) 125ml(98x72x28mm)
5.5ml(45x22x13mm 15ml(30x30x30mm) 30ml(80x40x17mm) 1800ml(380x135x60mm)
9ml(60x25x15mm) 15ml(60x30x15mm) 50ml(90x60x17mm)
10ml(50x28x14mm) 22ml(100x25x15mm) 84ml(120x60x18mm)

Model 4

Square advanced alumina ceramic crucible detail 4
04
9ml(60x25x15mm) 50ml(85x30x40mm) 125ml(98x72x28mm) 1050ml(150x150x60mm) 1800ml(380x135x60mm)
15ml(60x30x15mm) 84ml(120x60x18mm) 460ml(160x120x35mm) 1290ml(150x150x80mm) 4000ml(225x225x100mm)
15ml(30x30x30mm) 95ml(120x100x15mm) 710ml(155x120x50mm) 1800ml(150x100x150mm)
22ml(100x25x15mm) 100ml(100x50x30mm) 900ml(120x120x100mm) 4400ml(200x150x200mm)

Model 5

Square advanced alumina ceramic crucible detail 5
05
0.9ml(45x8x6mm) 59ml(100x30x30mm) 260ml(100x100x35mm) 1880ml(340x220x35mm) 6900ml(330x330x80mm)
3ml(25x15x15mm) 84ml(65x65x30mm) 425ml(150x150x30mm) 3120ml(300x150x90mm) 14L(330x330x160mm)
5ml(30x20x17mm) 170ml(170x53x30mm) 445ml(100x100x60mm) 3300ml(200x200x100mm)
16ml(40x30x20mm) 200ml(115x90x30mm) 1090ml(140x140x70mm) 3760ml(300x200x80mm)
35ml(70x30x30mm) 230ml(115x65x45mm) 1260ml(160x120x85mm) 4000ml(235x165x130mm)

Model 6

Square advanced alumina ceramic crucible detail 6
06
One big (50x40x20) and two small (30x20x17) One large (90x65x30) four small (50x20x20) One large (100x30x20) four small (20x20x17) One large (115x90x30) five small (75x20x20) One big (120x60x20) and two small (50x40x20)
One big (80x80x40) and two small (60x30x30) One big (90x65x30) and two small (50x40x20) One large (100x30x20) and three small (30x20x17) One large (115x115x35) and three small (100x30x20) One big (120x60x20) and two small (100x20x20)
One Big (90x60x20) Four small (50x20x20) One Large (90x65x30) and three small (52x25x23) One Large (100x40x20) and three small (φ28x17) One big (120x30x15) five small (20x20x17) One big (120x60x20) five small (50x20x20)
One large (90x60x17 ) and three small (50x28x1) One large (100x30x15) and three small (30x20x10) One Large (100x40x20) and three small (φ30x30) One large (115x115x35) and three small (100x30x20) One large (120x60x40) and three small (40x35x25)
One big (90x60x20) and two small (50x40x20) One big (100x30x20) five small (φ18x26) One large (100x100x40) nine small (10ml ) One large (120x35x18) seven small (25x15x15) One large (120x80x30) six small (20ml )
One big (90x60x20) five small (80x10x10) One large (100x30x20) and four small (φ20x20) One Large (115x65x45) and four small (50x25x35) One large (120x60x18 ) and four small (50x28x14) One large (120x80x40) six small (15ml)

Model 7

Square advanced alumina ceramic crucible detail 7
07
One large (φ58x60) and seven small (φ16x50) One large (100x40x20) and three small (φ28x17) One large (120x60x20) two small (100x20x20 semicircle)
One large (φ70x70) and three small (φ28x58) One large (100x40x20) and three small (φ30x30) One large (120x60x40) and three small (40x35x25 semicircle)
One large (100x30x20) and four small (φ20x20) One large (100x100x40) nine small (10ml regular) One large (120x80x40) six small (15ml)
One big (100x30x20) five small (φ18x26) One large (115x65x45) four small (50x25x35) One large (120x80x30) six small (20ml heightened)

Model 8

Square advanced alumina ceramic crucible detail 8
08
2ml(50x10x10mm) 7ml(50x20x15mm) 68ml(65x65x25mm) 110ml(100x50x30mm) 165ml(90x60x40mm) 1000ml(150x110x80)
2.5ml(70x12x7mm) 15ml(75x20x20mm) 75ml(90x60x20mm) 115ml(65x65x35mm) 170ml(90x90x30mm) 2000ml(160x140x120mm)
4ml(50x20x10mm) 34ml(150x20x20mm) 85ml(120x60x18mm) 120ml(90x65x30mm) 185ml(80x80x40mm) 2600ml(200x200x80mm)
4.5ml (80x10x10mm) 57ml(75x75x15mm) 80ml(120x60x18mm) 135ml(95x68x28mm) 185ml(94x68x38mm) 4800ml(250x250x100mm)
7ml(50x25x10mm) 63ml(150x45x20mm) 90ml(120x60x20mm) 160ml(78x28x107) 520ml(140x140x38mm)

Model 9

Square advanced alumina ceramic crucible detail 9
09
1.5ml with holes (30x10x9.5mm) 60ml(100x43x26mm)
19ml(100x24x17) 114ml(100x56x35mm)
24ml(73x30x22mm) 175ml(100x84x35mm)
36ml(100x27x27mm) Other specifications can be customized

Model 10

Square advanced alumina ceramic crucible detail 10
10
0.9ml with lid (45x8x6mm) 26ml with lid (50x25x35mm) 80ml with lid (120x60x18mm) 150ml with lid (100x100x25mm) 330ml with lid (115x115x35mm) 520ml with lid (140x140x38mm)
3ml with lid (25x15x15mm) 40ml with lid (50x50x25mm) 84ml with lid (65x65x30mm) 160ml with lid (78x28x107mm) 370ml with lid (200x100x25mm) 750ml with lid (150x150x50mm)
4ml with lid (50x20x10mm) 59ml with lid (100x30x30mm) 100ml with lid (65x65x35mm) 170ml with lid (90x90x30mm) 425ml with lid (150x150x30mm) 800ml with lid (200x100x50mm)
7ml with lid (50x20x15mm) 60ml with lid (105x105x12mm) 100ml with lid (100x50x30mm) 260ml with lid (100x100x35mm) 445ml with lid (100x100x60mm) 900ml with lid (120x120x100mm)
7ml with lid (50x25x10mm) 68ml with lid (65x65x25mm) 110ml with lid (70x70x30mm) 310ml with lid (105x105x40mm) 510ml with lid (120x120x50mm)

Model 11

Square advanced alumina ceramic crucible detail 11
11
4ml(50x20x10mm) 26ml(50x25x35mm) 195ml(85x80x40mm) 800ml(200x100x50mm) 3100ml(220x220x80mm)
5.5ml(100x10x10mm) 30ml(60x40x20mm) 200ml(90x60x45mm) 1100ml(305x90x60mm) 298ml(200x100x30mm)
10ml(75x18x14mm) 35ml(120x30x15mm) 205ml(120x80x30mm) 1480ml(200x200x50mm)
16ml(60x30x15mm) 150ml(100x100x25mm) 210ml(85x85x40mm) 2400ml(250x155x80mm)
20ml(52x25x23mm) 190ml(120x60x40mm) 370ml(200x100x25mm 2830ml(300x180x70mm)

Model 12

Square advanced alumina ceramic crucible detail12
12
1050ml with lid (150x150x60mm) 1460ml with lid 180x180x60 2600ml with lid 200x200x80 6900ml with lid (330x330x80mm)
1090ml with lid (140x140x70mm) 1480ml with lid 200x200x50 4400ml with cover (200x150x200mm) 11000ml with cover 330x330x120
1290ml with lid (150x150x80mm) 2830ml with cover 300x180x70 4800ml with cover (250x250x100mm) 14L with cover (330x330x160mm)

Model 13

Square advanced alumina ceramic crucible detail 13
13
4ml with lid 20x20x18mm 3.5ml with lid 20x20x17mm

Model 14

Square advanced alumina ceramic crucible detail 14
14
800ml(130x120x75mm) 1300ml(130x120x115mm)

The crucibles we show are available in different sizes and custom sizes are available on request.

Advantages

  • High temperature resistance: long-term use at 1600°C, short-term use at 1800°C (Al2O3≥99%), suitable for melting, sintering, annealing and other occasions.
  • Low Thermal Conductivity: Minimizes thermal shock for safe handling even when very hot.
  • Superior Durability: Withstands multiple heating and cooling cycles without cracking or deforming.
  • Easy to clean and cost-effective.
  • Broad Material Compatibility: Compatible with metals, salts, organics and a wide variety of laboratory chemicals.
  • Non-toxic, safe for laboratory use.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are Muffle Furnace Used For?

Muffle furnaces are mainly used for high-temperature applications in industrial manufacturing and laboratory environments. They provide a controlled and insulated environment for heating materials, allowing precise temperature control. Muffle furnaces are ideal for ashing samples, heat-treating applications, and materials research. They are commonly used for melting glass, creating enamel coatings, technical ceramics, soldering, and brazing. Muffle furnaces use technology and design to achieve greater control of temperature uniformity and isolate heated materials from combustion contaminants.

What Is CVD (Chemical Vapor Deposition) And What Are Its Key Advantages?

CVD, or Chemical Vapor Deposition, is a process where materials are deposited onto a substrate from the vapor phase. Key advantages include the ability to coat restricted access surfaces, a wide range of coating materials (metals, alloys, and ceramics), very low porosity levels, high purity, and economical production with large batch numbers.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Main Differences Between Square And Cylindrical Crucibles?

Material accommodation:Square Crucible: Due to its shape, a square crucible provides more surface area for containing materials, especially when powder or granular substances are involved. It can efficiently stack materials and is suitable for processes that require even distribution of materials.Cylindrical Crucibles: Cylindrical crucibles provide a more compact and concentrated space for containing liquids, molten metal, or other materials in the shape of a vessel. It is especially useful when dealing with materials that need to be sealed or where the surface area exposed to the atmosphere needs to be minimized.Pouring and Handling:Square Crucible: The square shape of the square crucible facilitates the pouring and transfer of materials. It provides convenient corners or edges for pouring liquids or solids into molds or other containers.Cylindrical crucibles: Due to the absence of corners or edges, cylindrical crucibles may be less convenient for pouring or transferring material. It may require additional equipment or techniques to pour or handle the material.In summary, the choice between square and cylindrical crucibles depends on the specific application and the nature of the material being processed. Square crucibles are generally better for powders or granular substances, while cylindrical crucibles are better for liquids or materials that need to be contained in a compact space.

What Are The Common Applications Of Alumina Crucibles?

Alumina crucibles have diverse applications in industries such as metallurgy, ceramics, chemistry, and materials research. They are commonly used for high-temperature processes, including melting, calcination, and sintering of metals, alloys, and ceramics. Alumina crucibles are also utilized in the production of catalysts, glass, and advanced materials. In laboratories, they are used for sample preparation, heating, and chemical reactions. Additionally, alumina crucibles find applications in thermal analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

What Are The Advantages Of Using Ceramic Crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Types Of Muffle Furnace?

Box furnace, tube furnace, crucible furnace, split furnace, vacuum furnace, and multi-zone furnace are some types of muffle furnaces. The choice of muffle furnace depends on the specific application and requirements of the user.

What Are Some Common Applications Of CVD Materials?

CVD materials are used in various applications such as cutting tools, loudspeakers, dressing tools, wire drawing dies, thermal management, electronics, optics, sensing, quantum technologies, and more. They are valued for their superior thermal conductivity, durability, and performance in different environments.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Advantages Of Using Alumina Crucibles?

Alumina crucibles offer several advantages in high-temperature applications. Firstly, they have excellent thermal shock resistance, allowing them to withstand rapid heating and cooling without cracking. Alumina crucibles also have high chemical resistance, making them suitable for use with acids, bases, and other corrosive materials. They have low electrical conductivity, which is beneficial for preventing electrical interference in certain applications. Alumina crucibles are also inert and do not react with most substances, ensuring the purity of the materials being processed. Additionally, they have a long lifespan and can withstand repeated use at high temperatures.

What Are Some Common Uses Of Ceramic Crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Is Muffle Furnace In Chemistry?

A muffle furnace is a type of oven equipment used in chemistry that can reach high temperatures and provides a controlled and insulated environment for heating materials, allowing precise temperature control. It separates the object to be heated from all byproducts of combustion from the heat source. Muffle furnaces are used in solid-state reactions, such as reducing metals or creating oxides, and for limiting oxygen exposure in materials. They are also used in high-temperature chemical vapor deposition processes and are ideal for ashing samples, heat-treating applications, and materials research.

What Types Of CVD Materials Are Available?

There are several types of CVD materials available, including CVD Diamond coatings, CVD diamond domes, CVD Diamond for dressing tools, CVD Diamond wire drawing die blanks, CVD Diamond cutting tool blanks, CVD boron-doped diamond, CVD diamond for thermal management, and more. Each type is tailored for specific applications.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

How Should Alumina Crucibles Be Handled And Maintained?

Proper handling and maintenance of alumina crucibles are crucial to ensure their longevity and optimal performance. When handling, it is important to avoid dropping or impacting the crucibles to prevent cracking or damage. They should be stored in a clean and dry environment to avoid contamination. Regular cleaning of the crucibles is necessary to remove any residual materials or impurities. This can be done using a soft brush, mild detergent, or solvents suitable for alumina. It is recommended to preheat the crucibles before use, especially when subjected to rapid temperature changes, to prevent thermal shock. Crucibles should be inspected for cracks, erosion, or other damage, and if any issues are found, they should be replaced to maintain the quality of the materials being processed. Following the manufacturer's guidelines for maintenance and handling is essential.

How Can I Choose The Right Ceramic Crucible For My Application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

What Is The Use Of Muffle Furnace For Ash?

Muffle furnaces are commonly used for ashing samples, which involves heating materials to high temperatures to determine their percentage of ash content. This process is helpful in testing and treating materials in various industries such as cement making, foundry, and nuclear sectors. The standard muffle furnace is also used for manufacturing glass, ceramics, and other materials. Overall, muffle furnaces play a vital role in material testing and treatment at high temperatures, making them a crucial apparatus in many industries.

How Does CVD Diamond Enhance The Performance Of Cutting Tools?

CVD diamond enhances cutting tools by providing superior wear resistance, low friction, and high thermal conductivity. This makes them ideal for machining non-ferrous materials, ceramics, and composites, ensuring longer tool life and better performance.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

How Should Ceramic Crucibles Be Handled And Maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Is The Temperature Of Muffle Furnace?

The temperature range of a muffle furnace is between 800°C to 1800°C, with a maximum temperature of 1473 K (1200°C; 2192°F). It is crucial to choose a furnace that will reach the desired temperature for your applications. Muffle furnaces are commonly used in metallurgy, glassmaking, ceramics, and other industries that require materials to be melted or heated to high temperatures. It usually takes approximately an hour for a muffle furnace to reach maximum temperature.

What Makes CVD Diamond Domes Suitable For High-performance Loudspeakers?

CVD diamond domes are suitable for high-performance loudspeakers due to their exceptional sound quality, durability, and power handling capabilities. Made with DC Arc Plasma Jet technology, they deliver superior acoustic performance for high-end audio applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

How Does CVD Diamond Improve Thermal Management In Electronic Devices?

CVD diamond improves thermal management in electronic devices by offering high-quality diamond with thermal conductivity up to 2000 W/mK. This makes it ideal for use in heat spreaders, laser diodes, and GaN on Diamond (GOD) applications, effectively dissipating heat and enhancing device performance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.9

out of

5

These crucibles are a lifesaver in the lab. They can withstand high temperatures and are easy to clean. I've been using them for a few months now and they're still in great condition.

Elliot Smith

4.7

out of

5

I'm a chemist and I use these crucibles for a variety of experiments. They're durable and can withstand high temperatures. I've never had one break on me.

Isabella Garcia

4.8

out of

5

These crucibles are a great value for the price. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Oliver Chen

4.9

out of

5

I'm a metallurgist and I use these crucibles for melting and casting metals. They're very durable and can withstand high temperatures. I've never had one fail on me.

Amelia Johnson

4.7

out of

5

These crucibles are perfect for my laboratory needs. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Liam Brown

4.8

out of

5

I'm a chemist and I use these crucibles for a variety of experiments. They're very durable and can withstand high temperatures. I've never had one break on me.

Sophia Davis

4.9

out of

5

These crucibles are a great value for the price. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Jackson Wilson

4.7

out of

5

I'm a metallurgist and I use these crucibles for melting and casting metals. They're very durable and can withstand high temperatures. I've never had one fail on me.

Ava Jones

4.8

out of

5

These crucibles are perfect for my laboratory needs. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Lucas Garcia

4.9

out of

5

I'm a chemist and I use these crucibles for a variety of experiments. They're very durable and can withstand high temperatures. I've never had one break on me.

Harper Rodriguez

4.7

out of

5

These crucibles are a great value for the price. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Benjamin Miller

4.8

out of

5

I'm a metallurgist and I use these crucibles for melting and casting metals. They're very durable and can withstand high temperatures. I've never had one fail on me.

Isabella Garcia

4.9

out of

5

These crucibles are perfect for my laboratory needs. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Oliver Chen

4.7

out of

5

I'm a chemist and I use these crucibles for a variety of experiments. They're very durable and can withstand high temperatures. I've never had one break on me.

Amelia Johnson

4.8

out of

5

These crucibles are a great value for the price. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Liam Brown

4.9

out of

5

I'm a metallurgist and I use these crucibles for melting and casting metals. They're very durable and can withstand high temperatures. I've never had one fail on me.

Sophia Davis

4.7

out of

5

These crucibles are perfect for my laboratory needs. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Jackson Wilson

4.8

out of

5

I'm a chemist and I use these crucibles for a variety of experiments. They're very durable and can withstand high temperatures. I've never had one break on me.

Ava Jones

4.9

out of

5

These crucibles are a great value for the price. They're made of high-quality materials and they're very durable. I've been using them for a few months now and they're still in great condition.

Lucas Garcia

PDF - Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Download

Catalog of Fine Ceramics

Download

Catalog of Alumina Crucible

Download

Catalog of Ceramic Crucible

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Muffle Furnace

Download

Catalog of Cvd Materials

Download

Catalog of Engineering Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

High Quality Alumina Ceramic Screw for Engineering Advanced Fine Ceramics with High Temperature Resistance and Insulation

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Engineering Advanced Fine Alumina Al2O3 Ceramic Rod Insulated for Industrial Applications

Engineering Advanced Fine Alumina Al2O3 Ceramic Rod Insulated for Industrial Applications

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

Arc-Shaped Alumina Ceramic Crucible High Temperature Resistant for Engineering Advanced Fine Ceramics

In the journey of scientific exploration and industrial production, every detail is crucial. Our arc-shaped alumina ceramic crucibles, with their excellent high temperature resistance and stable chemical properties, have become a powerful assistant in laboratories and industrial fields. They are made of high-purity alumina materials and manufactured through precision processes to ensure excellent performance in extreme environments.

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

High Purity Alumina Granulated Powder for Engineering Advanced Fine Ceramics

Ordinary alumina granulated powder is alumina particles prepared by traditional processes, with a wide range of applications and good market adaptability. This material is known for its high purity, excellent thermal stability and chemical stability, and is suitable for a variety of high-temperature and conventional applications.

Engineering Advanced Fine Ceramics Alumina Crucibles (Al2O3) for Thermal Analysis TGA DTA

Engineering Advanced Fine Ceramics Alumina Crucibles (Al2O3) for Thermal Analysis TGA DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Advanced Engineering Fine Ceramics Alumina Ceramic Saggar for Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

Precision Machined Zirconia Ceramic Ball for Engineering Advanced Fine Ceramics

zirconia ceramic ball have the characteristics of high strength, high hardness, PPM wear level, high fracture toughness, good wear resistance, and high specific gravity.

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Engineering Advanced Fine Ceramics Aluminium Oxide Al2O3 Ceramic Washer for Wear-Resistant Applications

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

1700℃ Muffle Oven Furnace for Laboratory

1700℃ Muffle Oven Furnace for Laboratory

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

Evaporation Crucible for Organic Matter

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

Engineering Advanced Fine Ceramics Aluminum Oxide Al2O3 Heat Sink for Insulation

Engineering Advanced Fine Ceramics Aluminum Oxide Al2O3 Heat Sink for Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

Vacuum Heat Treat and Sintering Furnace with 9MPa Air Pressure

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

1200℃ Muffle Furnace Oven for Laboratory

1200℃ Muffle Furnace Oven for Laboratory

Upgrade your lab with our 1200℃ Muffle Furnace. Achieve fast, precise heating with Japan alumina fibers and Molybdenum coils. Features TFT touch screen controller for easy programming and data analysis. Order now!

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon Carbide (SIC) Ceramic Plate for Engineering Advanced Fine Ceramics

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Related Articles

The Role of Laboratory Ovens in Scientific Research and Industry

The Role of Laboratory Ovens in Scientific Research and Industry

Laboratory ovens are versatile pieces of equipment used in a variety of scientific and industrial settings. They are designed to provide precise temperature control and uniform heating, making them ideal for processes such as baking, curing, and drying various substances.

Find out more
Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Understanding Cold Isostatic Pressing: Application, Advantages, and Limitations

Cold Isostatic Pressing (CIP) is a widely used manufacturing process in various industries, including ceramics, metalworking, and pharmaceuticals. It involves applying equal pressure from all directions to a material placed inside a flexible mold or bag. This process helps in achieving uniform density and shaping complex components with intricate geometries.

Find out more
Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Comprehensive Guide to Atmosphere Furnaces: Types, Applications, and Benefits

Explore the world of atmosphere furnaces with our detailed guide. Learn about their types, applications in metallurgy and beyond, and the benefits they offer for precise material heat treatment.

Find out more
Introduction to Various Ceramic Crucibles

Introduction to Various Ceramic Crucibles

An overview of different types of ceramic crucibles, their properties, and applications.

Find out more
Ceramic Alumina Crucible for Thermal Analysis Test Containers

Ceramic Alumina Crucible for Thermal Analysis Test Containers

An in-depth guide on selecting and using ceramic alumina crucibles for thermal analysis tests, focusing on factors affecting test results.

Find out more
Vacuum Induction Melting Furnace vs Arc Melting Furnace: Choosing the Right Equipment for Your Process

Vacuum Induction Melting Furnace vs Arc Melting Furnace: Choosing the Right Equipment for Your Process

Learn about the key differences between vacuum induction melting furnaces and arc melting furnaces, including their advantages and applications, to help you choose the best equipment for your specific needs.

Find out more
Alumina Crucibles in Precision Casting

Alumina Crucibles in Precision Casting

Explores the use of alumina crucibles in precision casting, focusing on their properties and advantages in high-temperature alloy melting.

Find out more
The Effect of Powder Moisture Content on Cold Isostatic Pressing

The Effect of Powder Moisture Content on Cold Isostatic Pressing

Cold Isostatic Pressing (CIP) is a manufacturing process used to create high-density ceramics and metals. This process involves placing the powder into a flexible mold, which is then pressurized with a liquid medium to create a uniform density.

Find out more
Substances Suitable for Calcination in a High-Temperature Muffle Furnace

Substances Suitable for Calcination in a High-Temperature Muffle Furnace

An overview of materials and experiments suitable for calcination in a high-temperature muffle furnace.

Find out more
Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Advantages of Mullite Fiber Lining for High-Temperature Furnaces

Explores the benefits of mullite fiber linings in high-temperature industrial furnaces, focusing on thermal stability, energy efficiency, and long-term cost savings.

Find out more
Choosing the Right Muffle Furnace for Laboratory Needs

Choosing the Right Muffle Furnace for Laboratory Needs

Guide on selecting muffle furnaces based on temperature, chamber size, and other critical factors.

Find out more
Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

Comprehensive Guide to Alumina Crucibles in Powder Metallurgy

An in-depth look at the properties, applications, and usage of alumina crucibles in powder metallurgy processes.

Find out more