Products Lab Consumables & Materials fine ceramics Alumina (Al2O3) Ceramic Rod-Insulated
Alumina (Al2O3) Ceramic Rod-Insulated

fine ceramics

Alumina (Al2O3) Ceramic Rod-Insulated

Item Number : KM-C09

Price varies based on specs and customizations


Material
Aluminum oxide
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

Alumina ceramic rods are made of high-purity alumina material, formed by cold isostatic pressing, sintered at high temperature, and precisely processed. It has the advantages of high temperature resistance, wear resistance, corrosion resistance, high hardness and low friction coefficient.

Alumina ceramic rods have a wide range of applications:

  • Used in the manufacture of CVD, ion implantation, lithography and semiconductor parts.
  • Alumina ceramics are ideal for products such as injection tubes, gas nozzles and insulators.
  • It is used as a material for industrial furnaces due to its ability to maintain hardness at high temperatures.
  • Used as a protector for high temperature thermocouples.
  • It is used as a material in the chemical industry due to its high corrosion resistance.
  • High-end fields such as instrumentation, medical equipment, textile power, mechanical hardware, automobile military industry, aerospace and aerospace.

Detail & Parts

Insulated corundum alumina ceramic rod detail 1Insulated corundum alumina ceramic rod detail 2Insulated corundum alumina ceramic rod detail 3Insulated corundum alumina ceramic rod detail 4Insulated corundum alumina ceramic rod detail 5Insulated corundum alumina ceramic rod detail 6

Technical specifications

0.4*100mm 0.9*100mm 3.2*100mm 6*100mm 13*114mm 18*86mm 40*100mm 8*300mm 24*400mm
0.5*100mm 1*100mm 3.5*100mm 7*100mm 14*114mm 18*100mm 50*100mm 10*300mm 30*400mm
0.6*100mm 2*100mm 4*100mm 8*100mm 15*100mm 20*100mm 60*100mm 12*300mm
0.8*100mm 2*150mm 4.5*90mm 9*100mm 16*100mm 25*100mm 4*300mm 15*300mm
0.7*100mm 2.5*100mm 4.75*100mm 10*100mm 15*100mm 30*100mm 5*300mm 16*300mm
0.8*100mm 3*100mm 5*100mm 12*100mm 16*100mm 35*100mm 6*300mm 20*300mm

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Non-reactive and non-toxic, it is ideal for medical and food processing applications.
  • Alumina ceramic rods are electrically insulated, with a volume resistivity >1014Ohm/cm2, which can be used as an insulator for operational physical phenomena.
  • Alumina Ceramic Rod is a high strength, corrosion resistant material designed for a wide range of heavy duty applications.
  • It has excellent wear resistance, excellent heat damage resistance, and excellent physical phenomenon insulation performance.
  • Rods are machined and polished to extra tolerances and are available in a variety of sizes and shapes.
  • High temperature resistance, long-term use at 1600°C, short-term use at 1800°C (Al2O3≥99%).
  • High hardness, low thermal expansion, low coefficient of friction.
  • Gear resistance and corrosion resistance.

FAQ

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

What Are The Applications Of Boron Nitride Ceramic Parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Are The Advantages Of Using Boron Nitride Ceramic Parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What Considerations Should Be Made When Selecting Boron Nitride Ceramic Parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Manufacturing Processes Are Used To Produce Boron Nitride Ceramic Parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.7

out of

5

The alumina ceramic rods from KINTEK SOLUTION are the best in the market. They are durable and can withstand high temperatures.

Aiden Huber

4.8

out of

5

I've been using KINTEK SOLUTION's alumina ceramic rods for years and they have never failed me. Their quality is top-notch and they are always delivered on time.

Emmanuelle Rousseau

4.9

out of

5

KINTEK SOLUTION's alumina ceramic rods are the perfect choice for my laboratory. They are strong, reliable, and affordable.

Miroslava Vajdova

4.6

out of

5

I highly recommend KINTEK SOLUTION's alumina ceramic rods. They are a great value for the price and they work perfectly for my needs.

Jayden Leonard

4.7

out of

5

The alumina ceramic rods from KINTEK SOLUTION are a must-have for any laboratory. They are high-quality and very durable.

Patricio Hernandez

4.8

out of

5

I'm very satisfied with the alumina ceramic rods from KINTEK SOLUTION. They are very well-made and they have exceeded my expectations.

Elif Hristova

4.9

out of

5

KINTEK SOLUTION's alumina ceramic rods are the best I've ever used. They are incredibly strong and can withstand even the most extreme temperatures.

Eric Boudreau

4.6

out of

5

I highly recommend KINTEK SOLUTION's alumina ceramic rods. They are a great value for the price and they work perfectly for my needs.

Meltem Jafari

4.7

out of

5

The alumina ceramic rods from KINTEK SOLUTION are a must-have for any laboratory. They are high-quality and very durable.

Daniel Malmberg

4.8

out of

5

I'm very satisfied with the alumina ceramic rods from KINTEK SOLUTION. They are very well-made and they have exceeded my expectations.

Maria Popova

4.9

out of

5

KINTEK SOLUTION's alumina ceramic rods are the best I've ever used. They are incredibly strong and can withstand even the most extreme temperatures.

David Martin

4.6

out of

5

I highly recommend KINTEK SOLUTION's alumina ceramic rods. They are a great value for the price and they work perfectly for my needs.

Anna Andersson

4.7

out of

5

The alumina ceramic rods from KINTEK SOLUTION are a must-have for any laboratory. They are high-quality and very durable.

Miroslav Ivanov

4.8

out of

5

I'm very satisfied with the alumina ceramic rods from KINTEK SOLUTION. They are very well-made and they have exceeded my expectations.

Josefa Costa

PDF - Alumina (Al2O3) Ceramic Rod-Insulated

Download

Catalog of Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Engineering Ceramics

Download

Catalog of Boron Nitride Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Alumina ceramic positioning pin has the characteristics of high hardness, wear resistance and high temperature resistance.

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia Ceramic Rod - Stabilized Yttrium Precision Machining

Zirconia ceramic rods are prepared by isostatic pressing, and a uniform, dense and smooth ceramic layer and transition layer are formed at high temperature and high speed.

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Boron Nitride (BN) Ceramic Rod

Boron Nitride (BN) Ceramic Rod

Boron nitride (BN) rod is the strongest boron nitride crystal form like graphite, which has excellent electrical insulation, chemical stability and dielectric properties.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Thermally evaporated tungsten wire

Thermally evaporated tungsten wire

It has a high melting point, thermal and electrical conductivity, and corrosion resistance. It is a valuable material for high temperature, vacuum and other industries.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

silicon carbide(SiC) heating element

silicon carbide(SiC) heating element

Experience the advantages of Silicon Carbide (SiC) Heating Element: Long service life, high corrosion and oxidation resistance, fast heating speed, and easy maintenance. Learn more now!

Boron Nitride (BN) Ceramic Custom Parts

Boron Nitride (BN) Ceramic Custom Parts

Boron nitride (BN) ceramics can have different shapes, so they can be manufactured to generate high temperature, high pressure, insulation and heat dissipation to avoid neutron radiation.

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

Alumina Crucibles (Al2O3) Covered Thermal Analysis / TGA / DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.