Products Lab Consumables & Materials fine ceramics Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation
Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

fine ceramics

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Item Number : KM-C013

Price varies based on specs and customizations


Material
Aluminum oxide
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Application

A ceramic heat sink is a device for dissipating heat from electronic components in electrical appliances. The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum. Ceramic insulation, high temperature resistance, oxidation resistance, acid and alkali resistance, thermal shock, low thermal expansion coefficient, ensuring stability in high and low temperature or other harsh environments. Ceramics can withstand large currents, withstand high voltages, prevent leakage breakdown, have no noise, and will not generate coupling parasitic capacitance with MOS and other power tubes, thus simplifying the filtering process.

  • It maintains hardness at high temperatures, so it can be used as a material for industrial furnaces.
  • Used in the manufacture of CVD, ion implantation, lithography and semiconductor parts.
  • In traditional industries, alumina ceramics are used in products such as injection pipes, gas nozzles and insulators
  • LED lighting, loudspeaker/audio, power transistor, power module, etc. and some high-power equipment.
  • IC, MOS, triode, Schottky, IGBT and other surface heat sources that need heat dissipation!
  • Especially suitable for high-power equipment, the design space is especially suitable for light, thin, short and small.

Detail & Parts

Alumina ceramic heat sink detail 1Alumina ceramic heat sink detail 2Alumina ceramic heat sink detail 3Alumina ceramic heat sink detail 4Alumina ceramic heat sink detail 5Alumina ceramic heat sink  size details

Technical specifications

1.7*3mm 10*4mm 16*1mm 20*20mm 29.5*1mm 60*1mm 100*8mm
3*3mm 10*5mm 16*4mm 20.5*1mm 30.5*1mm 57.8*6mm 107*3mm
4*2.3mm 10.5*2mm 16*5mm 22*1mm 32*5mm 70*1mm 150*5mm
6*6mm 10.5*10.5mm 17*1mm 23.5*2.5mm 35*1mm 74*1mm 200*5mm
7*3.3mm 12*1mm 18*0.63mm 25*0.5mm 40*1mm 80*1mm  
8*5mm 12*5mm 19*0.8mm 26*4mm 45*0.5mm 90*1mm  
9.5*1.3mm 14*1mm 20*1mm 26*5mm 51*1mm 100*1mm  
10*1mm 16*0.5mm 20*10mm 28*6.5mm 50*5mm 100*2mm  

The produce we show are available in different sizes and custom sizes are available on request.

Advantages

  • Compared to aluminum radiators of the same volume, ceramic models have porosity that increases the surface area for heat dissipation.
  • No heat storage, direct heat dissipation, multi-directional heat dissipation, further speeding up heat dissipation.
  • Polycrystalline in nature, enhancing the rate of heat dissipation.
  • Ceramic insulation, high temperature resistance, oxidation resistance, acid and alkali resistance, long service life.
  • Effective anti-interference (EMI) and anti-static.
  • Natural inorganic materials meet environmental protection requirements.
  • Its insulating properties give it high electrical resistance, and its texture makes it stable, resistant to high temperatures and light in weight.

FAQ

What Are The Main Applications Of Fine Ceramics?

Fine ceramics are used in various applications including tableware, cookware, wall tiles, and sanitaryware. They are also used in structural ceramics like bricks and roof tiles, refractories such as furnace and kiln insulation, metal crucibles, and in advanced technical ceramics for high-temperature applications.

What Are Advanced Ceramics?

Advanced ceramics are specialized ceramic materials with enhanced properties such as high strength, high temperature resistance, and excellent electrical conductivity. They are used in various industries due to their unique characteristics.

What Are Engineering Ceramics?

Engineering ceramics are advanced ceramic materials designed for specific mechanical, thermal, electrical, and chemical properties. They are used in applications requiring high performance under extreme conditions.

Comparison Of Radiator Choices.

A heat sink does two jobs: conduct heat away from the chip, and dissipate the heat into the air. Copper conducts heat better, but aluminum dissipates heat better. So aluminum tends to work better when passive cooling is required (quiet, no fans), while copper works better with fans. Of course, many aluminum radiators come with fans and vice versa. Porous ceramic heat sinks work even better. They are not as common as metal radiators. They cool better than similarly sized metal heat sinks because the porous material has a greater surface area.

What Are The Main Types Of Fine Ceramics?

The main types of fine ceramics include alumina (Al2O3), zirconia, boron nitride (BN), silicon carbide (SiC), and silicon nitride (SiN). Each type has unique properties suitable for different applications.

What Are The Main Types Of Advanced Ceramics?

The main types of advanced ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), aluminum nitride (AlN), and boron nitride (BN). Each type has specific properties suitable for different applications.

What Are The Main Types Of Engineering Ceramics?

The main types of engineering ceramics include alumina (Al₂O₃), zirconia (ZrO₂), silicon carbide (SiC), silicon nitride (Si₃N₄), and boron nitride (BN). Each type has unique properties tailored for different applications.

What Is The Principle Behind Fine Ceramics?

Fine ceramics are made through a process involving high-temperature sintering of raw materials to form dense, strong, and durable materials. The specific properties of each type of ceramic are determined by the chemical composition and microstructure achieved during the sintering process.

What Are The Applications Of Advanced Ceramics?

Advanced ceramics are used in various fields such as aerospace, automotive, electronics, medical devices, and industrial machinery. They are valued for their high performance in extreme environments, including high temperatures and corrosive conditions.

What Are The Applications Of Engineering Ceramics?

Engineering ceramics are used in various industries such as aerospace, automotive, electronics, and metallurgy. Applications include wear-resistant parts, high-temperature components, electrical insulators, and heat sinks.

What Are The Advantages Of Using Fine Ceramics?

Fine ceramics offer several advantages including high temperature resistance, excellent electrical insulation, high hardness, wear resistance, chemical resistance, and low thermal expansion. These properties make them ideal for use in extreme environments and for specialized applications.

How Are Advanced Ceramics Manufactured?

Advanced ceramics are typically manufactured through processes like sintering, hot pressing, or isostatic pressing. These methods ensure the formation of a dense, uniform structure with desired mechanical and thermal properties.

How Do Engineering Ceramics Differ From Traditional Ceramics?

Engineering ceramics are designed for specific high-performance applications, offering superior mechanical strength, thermal resistance, and chemical stability. Traditional ceramics are more commonly used for decorative and household purposes.

What Are The Advantages Of Using Advanced Ceramics?

The advantages of advanced ceramics include high hardness, wear resistance, excellent thermal and electrical insulation, high temperature resistance, and chemical stability. These properties make them ideal for demanding applications.

What Are The Advantages Of Using Alumina Ceramics?

Alumina ceramics are known for their high hardness, wear resistance, and excellent electrical insulation. They also have good thermal conductivity and chemical stability, making them suitable for high-temperature applications.

What Is The Difference Between Alumina And Zirconia Ceramics?

Alumina ceramics are known for their good electrical conductivity, mechanical strength, and high temperature resistance. Zirconia ceramics, on the other hand, are valued for their high strength, high toughness, and excellent wear resistance.

Why Are Zirconia Ceramics Preferred In Certain Applications?

Zirconia ceramics are preferred for their high strength, toughness, and thermal shock resistance. They are often used in applications requiring durability and reliability under high stress and temperature conditions.

Why Are Silicon Carbide Ceramics Used In High-temperature Applications?

Silicon carbide (SiC) ceramics are used in high-temperature applications due to their high-strength, low-density, and excellent resistance to high temperatures. They are also resistant to chemical corrosion, making them suitable for harsh environments.

What Makes Silicon Carbide Ceramics Suitable For High-temperature Applications?

Silicon carbide ceramics have excellent thermal conductivity and high-temperature stability, making them ideal for applications in furnaces, heat exchangers, and other high-temperature environments.

What Makes Boron Nitride Ceramics Unique?

Boron nitride (BN) ceramics are unique due to their high melting point, high hardness, high thermal conductivity, and high electrical resistivity. Their crystal structure is similar to graphene and harder than diamond, making them suitable for high-performance applications.

How Are Boron Nitride Ceramics Used In Electronics?

Boron nitride ceramics are used in electronics for their excellent electrical insulation and thermal conductivity. They help in dissipating heat from electronic components, preventing overheating and improving performance.

How Do Advanced Ceramics Contribute To Energy Efficiency?

Advanced ceramics contribute to energy efficiency by providing materials that can withstand high temperatures and corrosive environments in energy production and conversion processes. They help in reducing energy losses and improving the overall efficiency of systems.

What Is The Manufacturing Process Of Engineering Ceramics?

Engineering ceramics are typically manufactured through processes like sintering, hot pressing, or chemical vapor deposition. These processes ensure the formation of dense, strong, and durable ceramic materials.

Can Engineering Ceramics Be Customized For Specific Applications?

Yes, engineering ceramics can be customized to meet specific application requirements. This includes tailoring their shape, size, and material composition to achieve desired mechanical, thermal, or electrical properties.
View more faqs for this product

4.8

out of

5

I am amazed by its high temperature stability and thermal conductivity.

Budislav Konvalinka

4.9

out of

5

The ceramic heat sink is fantastic, it dissipates heat efficiently and ensures stability in various environments.

Loraine Bracamonte

4.7

out of

5

The alumina ceramic crucible's insulation properties and mechanical strength are exceptional, making it perfect for high-temperature applications.

Cleve Medhurst

4.9

out of

5

The tungsten boats with alumina barrier offer excellent heat concentration, preventing sample creeping and wetting.

Margarett Hulme

4.6

out of

5

The ceramic heat sink's porosity increases the surface area for heat dissipation, resulting in faster cooling.

Linoel Tredinnick

4.7

out of

5

The alumina ceramic's hardness and wear-resistance make it ideal for wear-resistant inserts and products.

Lonie Watterson

4.8

out of

5

The alumina's resistance to strong acids and alkalis at elevated temperatures makes it suitable for corrosive environments.

Doralynn Chard

4.9

out of

5

The ceramic heat sink's ability to withstand large currents and high voltages prevents leakage breakdown and simplifies filtering.

Lelah Dowie

4.7

out of

5

The alumina's high hardness at high temperatures makes it a suitable material for industrial furnaces.

Pearla Carradice

4.8

out of

5

The alumina's applications in CVD, ion implantation, lithography, and semiconductor parts are highly valuable.

Bertie Worters

4.9

out of

5

The alumina ceramics' use in injection pipes, gas nozzles, and insulators in traditional industries is commendable.

Gwyneth Retchford

4.6

out of

5

The ceramic heat sink's compact design is perfect for light, thin, short, and small spaces, especially in high-power equipment.

Carola Alderwick

4.7

out of

5

The alumina's insulating properties provide high electrical resistance and stability under extreme conditions.

Bernette Dumbleton

4.8

out of

5

The ceramic heat sink's multi-directional heat dissipation speeds up the cooling process significantly.

Celinda Overbury

4.9

out of

5

The alumina's polycrystalline nature enhances the rate of heat dissipation, making it highly efficient.

Dorian Wingrove

4.7

out of

5

The ceramic heat sink's effective anti-interference and anti-static properties ensure reliable performance.

Lorne Horler

PDF - Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Download

Catalog of Fine Ceramics

Download

Catalog of Fine Ceramics

Download

Catalog of Advanced Ceramics

Download

Catalog of Engineering Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Aluminium Oxide (Al2O3) Ceramic Washer - Wear-Resistant

Alumina wear-resistant ceramic washer are used for heat dissipation, which can replace aluminum heat sinks, with high temperature resistance and high thermal conductivity.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Aluminum Oxide (Al2O3) Protective Tube - High Temperature

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

High Purity Aluminum Oxide (Al2O3) Sputtering Target / Powder / Wire / Block / Granule

Looking for Aluminum Oxide materials for your lab? We offer high-quality Al2O3 products at affordable prices with customizable shapes and sizes to meet your specific needs. Find sputtering targets, coating materials, powders, and more.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina Ceramic Screw - High Quality Insulation And High Temperature Resistance

Alumina ceramic screws are fastening components made of 99.5% alumina, ideal for extreme applications requiring excellent thermal resistance, electrical insulation and chemical resistance.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon Carbide (SIC) Ceramic Sheet Wear-Rresistant

Silicon carbide (sic) ceramic sheet is composed of high-purity silicon carbide and ultra-fine powder, which is formed by vibration molding and high-temperature sintering.

Aluminized ceramic evaporation boat

Aluminized ceramic evaporation boat

Vessel for depositing thin films; has an aluminum-coated ceramic body for improved thermal efficiency and chemical resistance. making it suitable for various applications.

Zirconia Ceramic Gasket - Insulating

Zirconia Ceramic Gasket - Insulating

Zirconia insulating ceramic gasket has high melting point, high resistivity, low thermal expansion coefficient and other properties, making it an important high temperature resistant material, ceramic insulating material and ceramic sunscreen material.

Silicon Carbide (SIC) Ceramic Plate

Silicon Carbide (SIC) Ceramic Plate

Silicon nitride (sic) ceramic is an inorganic material ceramic that does not shrink during sintering. It is a high-strength, low-density, high-temperature-resistant covalent bond compound.

Silicon Carbide (SIC) Ceramic Sheet Flat / Corrugated Heat Sink

Silicon Carbide (SIC) Ceramic Sheet Flat / Corrugated Heat Sink

Silicon carbide (sic) ceramic heat sink not only does not generate electromagnetic waves, but also can isolate electromagnetic waves and absorb part of electromagnetic waves.

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Alumina (Al₂O₃) Ceramic Positioning Pin - Straight Bevel

Alumina ceramic positioning pin has the characteristics of high hardness, wear resistance and high temperature resistance.

Alumina Ceramic Saggar - Fine Corundum

Alumina Ceramic Saggar - Fine Corundum

Alumina sagger products have the characteristics of high temperature resistance, good thermal shock stability, small expansion coefficient, anti-stripping, and good anti-powdering performance.

Related Articles

Electrode Fixture Guide: Types, Design, and Applications

Electrode Fixture Guide: Types, Design, and Applications

Discover the comprehensive guide to electrode fixtures, covering various types, design considerations, and their indispensable role in industries like electroplating, welding, and electrochemical cells.

Find out more
Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Dos and don'ts during the installation of molybdenum disilicide (MoSi2) heating element

Precautions when installing MoSi2 heating elements

Find out more
Investigating the Factors Affecting the Slow Temperature Rise in Box Furnaces

Investigating the Factors Affecting the Slow Temperature Rise in Box Furnaces

Sometimes, the temperature of the furnace may not rise as quickly as expected, or may not be able to reach the desired temperature at all.

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

This article discusses the applications and manufacturing techniques of advanced alumina ceramics, including molds, isostatic pressing, and green bodies.

Find out more
Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Advanced Alumina Ceramics: Applications and Manufacturing Techniques

Overview of alumina ceramics' applications and manufacturing methods, including molds, isostatic pressing, and green body formation.

Find out more
Selecting Heating Elements for Vacuum Furnaces

Selecting Heating Elements for Vacuum Furnaces

Guide on choosing heating elements and insulation screens for efficient vacuum furnace operation.

Find out more
Comprehensive Guide to Muffle Furnace Resistance Wire Design

Comprehensive Guide to Muffle Furnace Resistance Wire Design

Detailed analysis of resistance wire design principles, parameters, and calculation techniques for muffle furnace applications.

Find out more
Applications of PECVD Nano-Coating Technology in Electronic Devices

Applications of PECVD Nano-Coating Technology in Electronic Devices

PECVD nano-coating technology enhances durability and reliability in various electronic devices.

Find out more
Application of Hot Isostatic Pressing Technology in Special Ceramic Preparation

Application of Hot Isostatic Pressing Technology in Special Ceramic Preparation

Explores the use of HIP technology in special ceramics, focusing on preparation, characteristics, and industry trends.

Find out more