Knowledge What is the Process of Mixing Rubber Compounds? 5 Key Steps Explained
Author avatar

Tech Team · Kintek Solution

Updated 2 months ago

What is the Process of Mixing Rubber Compounds? 5 Key Steps Explained

Mixing rubber compounds is a multi-stage process that uses both open mills and internal mixers.

This process ensures that the rubber compound is ready for further processing or vulcanization.

5 Key Steps to Achieve a Homogeneous Rubber Compound

What is the Process of Mixing Rubber Compounds? 5 Key Steps Explained

1. Preparation and Initial Mixing on Open Mills

Adjusting Roll Distance: The first step involves setting the roll distance of the open mill to 0.5mm.

This narrow gap helps in creating a thin layer of rubber for better mixing.

Inserting Rubber Compound: The rubber compound is then placed into the mill.

A triangular bag is formed to facilitate even distribution of the compound across the rolls.

Thin Passes: The compound is passed through the rolls five times.

This ensures thorough mixing and eliminates any air bubbles.

Adjusting Roll Distance Again: The roll distance is then increased to about 2.4mm.

This facilitates the addition of rubber rolls and ensures a smooth surface without bubbles.

2. Cooling and Labeling

Weighing and Cooling: After mixing, the total mass of the rubber compound is weighed.

It is placed on a clean, flat metal surface to cool to room temperature.

Labeling: A label is attached to the compound indicating the formula number and mixing date.

This is for traceability and future reference.

3. Detailed Mixing Process in Internal Mixers

Preparation of Raw Materials: Based on the capacity of the internal mixer and a filling factor of 0.6-0.7, the amount of each component is accurately weighed and arranged in order.

Preheating and Checking: The mixer is preheated, and checks are performed on air pressure, water pressure, voltage, and the functioning of the temperature measurement system, timing device, and power system.

Sequential Addition of Components: The mixing process begins with the addition of raw rubber, followed by small materials, carbon black or filler, and finally, liquid softeners.

Each addition is mixed for a specified duration to ensure uniform dispersion.

4. Function and Mechanism of Mixing Mills

Initial Insertion and Wrapping: The untreated rubber block is inserted into the nip between the rolls.

The rolls pull the block in and wrap it around the front roll.

Addition of Additives: Additives such as fillers and softeners are added sequentially in the roll nip.

This ensures they are properly mixed with the rubber.

Repetitive Mixing: The rubber roll is repeatedly inserted and wound up.

This ensures complete incorporation of additives into the rubber base material.

Final Shaping: Once the additives are uniformly dispersed, the rubber mixture is shaped and prepared for vulcanization.

5. Role of Mechanical Shear Forces

Shearing and Mixing: The primary mechanism of mixing in both open mills and internal mixers involves the application of mechanical shear forces.

These forces help in blending, softening, homogenizing, and dispersing the ingredients within the rubber compound.

Temperature Control: The process of mixing generates heat.

This is managed to prevent degradation of the rubber.

The internal mixer, due to its higher efficiency and greater shearing effect, handles this more effectively than the open mill.

By following these detailed steps and utilizing both open mills and internal mixers, the process of mixing rubber compounds ensures a high-quality, homogeneous blend ready for subsequent stages of rubber processing.

Continue Exploring, Consult Our Experts

Transform your rubber manufacturing process with KINTEK SOLUTION's advanced mixing equipment and consumables.

Experience the precision of open mills and internal mixers that guarantee homogenous blends and efficient temperature control.

Discover the key to your rubber compound's superior quality and contact KINTEK SOLUTION today to elevate your production to new heights.

Your perfect blend is just a call away!

Related Products

Open Mixing Mill For Rubber Crusher / Open Type Two Roll Mill  Machine

Open Mixing Mill For Rubber Crusher / Open Type Two Roll Mill Machine

Rubber crusher open mixing mill/Open two roller rubber mixing mill machine is suitable for mixing and dispersing rubber, plastic raw materials, pigments, masterbatches and other high molecular polymers.

Lab Internal Rubber Mixer /Rubber Kneader Machine

Lab Internal Rubber Mixer /Rubber Kneader Machine

Lab internal rubber mixer is suitable for mixing, kneading and dispersing various chemical raw materials such as plastics, rubber, synthetic rubber, hot melt adhesive and various low-viscosity materials.

Twin screw extruder plastic granulation machine

Twin screw extruder plastic granulation machine

Twin screw extruder plastic granulation machine is designed for the mixing and processing experiments of engineering plastics, modified plastics, waste plastics and masterbatches.

Plate vulcanizing press vulcanised rubber machine for lab

Plate vulcanizing press vulcanised rubber machine for lab

The Plate vulcanizing press is a kind of equipment used in the production of rubber products, mainly used for the vulcanization of rubber products. Vulcanization is a key step in rubber processing.

Small lab rubber calendering machine

Small lab rubber calendering machine

Small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories, small-scale production facilities, and prototyping environments to create films, coatings, and laminates with precise thickness and surface finish.

Ball press mold

Ball press mold

Explore versatile Hydraulic Hot Press molds for precise compression molding. Ideal for creating various shapes and sizes with uniform stability.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Anti-cracking press mold

Anti-cracking press mold

The anti-cracking press mold is a specialized equipment designed for molding various shapes and sizes of film using high pressure and electric heating.

Ring press mold

Ring press mold

Ring Press Dies, also known as Circular Pellet Press Die Sets, are integral components in various industrial and laboratory processes.

4 inch PP chamber fully automatic laboratory homogenizer

4 inch PP chamber fully automatic laboratory homogenizer

Compact and efficient glue homogenizer for precise sample preparation in laboratories, featuring a 4-inch PP chamber, corrosion-resistant design, user-friendly LCD display, and customizable speed settings for optimal homogenization results.

Laboratory high temperature PTFE mixing paddle mixer

Laboratory high temperature PTFE mixing paddle mixer

The PTFE mixing paddle mixer is a versatile and robust tool designed for laboratory use, particularly in environments requiring high resistance to chemicals and extreme temperatures. Crafted from high-quality PTFE, this mixer boasts several key features that enhance its functionality and durability.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Infrared heating quantitative flat plate mold

Infrared heating quantitative flat plate mold

Discover advanced infrared heating solutions with high-density insulation and precise PID control for uniform thermal performance in various applications.

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

4 inch stainless steel chamber fully automatic laboratory glue homogenizer

The 4-inch stainless steel chamber fully automatic laboratory glue homogenizer is a compact and corrosion-resistant device designed for use in glove box operations. It features a transparent cover with constant torque positioning and an integrated mold opening inner cavity for easy disassembly, cleaning, and replacement.

Four-body horizontal jar mill

Four-body horizontal jar mill

The four-body horizontal tank mill ball mill can be used with four horizontal ball mill tanks with a volume of 3000ml. It is mostly used for mixing and grinding laboratory samples.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Double plate heating mold

Double plate heating mold

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

Lab Plastic PVC Calender   Stretch Film Casting Machine for Film Testing

Lab Plastic PVC Calender Stretch Film Casting Machine for Film Testing

The cast film machine is designed for the molding of polymer cast film products and has multiple processing functions such as casting, extrusion, stretching, and compounding.


Leave Your Message