Products Lab Consumables & Materials Thin Film Deposition Parts Custom Boron Nitride (BN) Ceramic Parts
Custom Boron Nitride (BN) Ceramic Parts

Thin Film Deposition Parts

Custom Boron Nitride (BN) Ceramic Parts

Item Number : KM-D8

Price varies based on specs and customizations


Material
Boron nitride
Specification
Customize
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

Boron Nitride (BN) Ceramic Custom Parts are a type of advanced ceramic material that is made from boron and nitrogen. They are known for their exceptional properties, including high temperature resistance, corrosion resistance, and electrical insulation. BN Ceramic Custom Parts are used in a wide range of industries, including aerospace, automotive, and electronics. They are also used in high-temperature applications, such as crucibles for crystal growth and insulators for high-temperature furnaces.

Application   

Boron Nitride (BN) ceramics are widely used in various industries due to their exceptional properties, including high-temperature resistance, corrosion resistance, and electrical insulation. These properties make BN ceramics an ideal choice for applications such as:

  • Crucibles for crystal growth
  • Break rings for horizontal casting machines
  • Insulators for high-temperature furnaces
  • Electric insulators in vacuum systems
  • Feedthroughs for high voltage equipment

Detail & Parts

Boron Nitride Ceramic Custom Parts detail  1Boron Nitride Ceramic Custom Parts detail  2Boron Nitride Ceramic Custom Parts detail  3Boron Nitride Ceramic Custom Parts detail  4Boron Nitride Ceramic Custom Parts detail  5Boron Nitride Ceramic Custom Parts detail  6Boron Nitride Ceramic Custom Parts detail  8Boron Nitride Ceramic Custom Parts detail  9Boron Nitride Ceramic Custom Parts detail  10Boron Nitride Ceramic Custom Parts detail  11Boron Nitride Ceramic Custom Parts detail  12Boron Nitride Ceramic Custom Parts detail  7

This product is a customized product, we can make it according to your needs.

Features

Boron Nitride (BN) Ceramic Custom Parts feature a unique combination of properties that make them ideal for a wide range of applications. These properties include:

  • High-temperature resistance: BN ceramics can withstand temperatures up to 1800°C (3272°F), making them suitable for use in high-heat applications such as crucibles, break rings, and insulators.
  • Corrosion resistance: BN ceramics are highly resistant to corrosion, making them ideal for use in harsh environments such as chemical processing and vacuum systems.
  • Electrical resistance: BN ceramics are excellent electrical insulators, making them suitable for use in high-voltage applications such as feedthroughs and insulators.
  • Machinability: BN ceramics can be easily machined into complex shapes, making them suitable for use in a wide range of applications.

FAQ

What Are The Applications Of Boron Nitride Ceramic Parts?

Boron Nitride ceramic parts find applications in various industries. They are commonly used in high-temperature environments, such as in thermal management systems, crucibles, heaters, and insulators. Due to their excellent thermal conductivity, Boron Nitride ceramic parts are used as heat sinks, substrates for electronic devices, and components in high-power electronics. They are also utilized in the aerospace industry for applications requiring lightweight and high-temperature resistance, such as rocket nozzles and thermal shields. Boron Nitride ceramic parts are also used in the semiconductor industry as wafer carriers, crucibles for crystal growth, and insulators. Additionally, they find applications in the chemical industry, where their chemical inertness and resistance to corrosion make them suitable for handling corrosive materials.

What Are The Advantages Of Using Boron Nitride Ceramic Parts?

Using Boron Nitride ceramic parts offers several advantages. Firstly, their high thermal conductivity allows for efficient heat transfer, making them ideal for applications requiring heat dissipation or thermal management. Secondly, Boron Nitride ceramics exhibit excellent electrical insulation properties, making them suitable for electrical and electronic applications. They have low dielectric loss and high dielectric strength, allowing for reliable electrical insulation even at high temperatures. Additionally, Boron Nitride ceramic parts have a low coefficient of friction, providing excellent lubrication and wear resistance in applications where low friction is desired. They are also chemically inert, making them resistant to most acids, alkalis, and molten metals. Boron Nitride ceramic parts can withstand high temperatures without significant deformation or degradation, making them suitable for use in extreme environments.

What Considerations Should Be Made When Selecting Boron Nitride Ceramic Parts?

Several considerations should be made when selecting Boron Nitride ceramic parts. Firstly, the specific application requirements should be evaluated, such as temperature range, electrical insulation properties, thermal conductivity, mechanical strength, and chemical resistance. This will help determine the appropriate grade or formulation of Boron Nitride ceramic to select. Secondly, the design and geometry of the ceramic part should be considered to ensure that it can be manufactured using the available processes and equipment. The dimensional tolerances and surface finish requirements should also be taken into account. Additionally, the cost and availability of the Boron Nitride ceramic parts should be considered, as different manufacturing processes and grades of Boron Nitride can vary in cost. It is advisable to consult with manufacturers or experts in the field to ensure that the selected Boron Nitride ceramic parts meet the specific application requirements.

What Manufacturing Processes Are Used To Produce Boron Nitride Ceramic Parts?

Several manufacturing processes can be used to produce Boron Nitride ceramic parts. The most common methods include hot pressing, hot isostatic pressing (HIP), and slip casting. Hot pressing involves compacting Boron Nitride powders under high pressure and temperature to form a dense ceramic. HIP involves subjecting the Boron Nitride powder compact to high temperature and pressure in an inert gas environment to achieve even higher density and eliminate any remaining porosity. Slip casting involves forming a slurry of Boron Nitride powder and a binder, pouring it into a mold, and then drying and firing the green body to produce the final ceramic part. Other processes, such as extrusion, injection molding, or machining, may be used for shaping and finishing the Boron Nitride ceramic parts, depending on the desired geometry and specifications.
View more faqs for this product

4.9

out of

5

I highly recommend this product! It's durable and performs well under high temperatures.

Vasilisa Semyonovna

4.7

out of

5

This product is a great value for the price. It's well-made and has exceeded my expectations.

Omar Balmes

4.8

out of

5

I'm amazed by the quality of this product. It's a game-changer for my laboratory.

Aida Yu

4.6

out of

5

This product has significantly improved the efficiency of my laboratory. I highly recommend it.

Konstantin Vasilev

4.9

out of

5

I'm thoroughly impressed with this product's performance. It's a must-have for any laboratory.

Elif Caymaz

4.8

out of

5

This product is a testament to the company's commitment to quality. It's a valuable addition to my laboratory.

Aleksey Monakhov

4.7

out of

5

I'm highly satisfied with the durability of this product. It's a reliable choice for demanding applications.

Yevgeniy Ivanchenko

4.9

out of

5

This product's technological advancements have revolutionized my laboratory work. Highly recommended!

Ayşe Deniz

4.8

out of

5

I'm amazed by the speed of delivery. It arrived much sooner than expected. Thank you for the excellent service.

Darya Aleksandrovna

4.7

out of

5

The quality of this product is exceptional. It's a testament to the company's dedication to manufacturing excellence.

Viktor Sergeyevich

4.9

out of

5

This product has exceeded my expectations. It's a valuable investment for any laboratory.

Olga Petrovna

4.8

out of

5

I'm highly impressed with the durability of this product. It's a reliable choice for demanding applications.

Yuliya Viktorovna

4.7

out of

5

This product has revolutionized my laboratory work. It's a must-have for any laboratory manager.

Aleksandr Ivanovich

4.9

out of

5

The technological advancements in this product are remarkable. It's a game-changer for my laboratory.

Natalya Sergeyevna

4.8

out of

5

I'm thrilled with the value for money this product offers. It's an excellent investment for any laboratory.

Sergey Vladimirovich

4.7

out of

5

This product has significantly improved the efficiency of my laboratory. I highly recommend it.

Olga Aleksandrovna

4.9

out of

5

I'm amazed by the speed of delivery. It arrived much sooner than expected. Thank you for the excellent service.

Ivan Petrovich

4.8

out of

5

The quality of this product is exceptional. It's a testament to the company's dedication to manufacturing excellence.

Natalya Ivanovna

PDF - Custom Boron Nitride (BN) Ceramic Parts

Download

Catalog of Thin Film Deposition Parts

Download

Catalog of Boron Nitride Ceramics

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Square Lab Press Mold for Laboratory Applications

Square Lab Press Mold for Laboratory Applications

Create uniform samples easily with Square Lab Press Mold - available in various sizes. Ideal for battery, cement, ceramics, and more. Custom sizes available.

Related Articles

CVD furnace for the growth of carbon nanotubes

CVD furnace for the growth of carbon nanotubes

Chemical vapor deposition (CVD) furnace technology is a widely used method for growing carbon nanotubes.

Find out more
The Benefits of Cold Isostatic Pressing

The Benefits of Cold Isostatic Pressing

Cold Isostatic Pressing (CIP) is a process used to compact powders into a specific shape or size. This method involves subjecting the powders to high pressure, typically between 100 and 200 MPa, in a liquid medium.

Find out more
The Future of Lab Presses in Research and Development

The Future of Lab Presses in Research and Development

Lab presses are an essential tool in research and development for a wide range of industries, including pharmaceuticals, materials science, and electronics.

Find out more
Hexagonal Boron Nitride: Enhancing Performance in Composite Ceramic Materials

Hexagonal Boron Nitride: Enhancing Performance in Composite Ceramic Materials

Explores the role of h-BN in various composite ceramics, highlighting its properties and applications.

Find out more
Guidelines for the Use of Boron Nitride Crucibles

Guidelines for the Use of Boron Nitride Crucibles

Instructions on the proper use, precautions, and compatibility of boron nitride crucibles.

Find out more
Introduction to Various Ceramic Crucibles

Introduction to Various Ceramic Crucibles

An overview of different types of ceramic crucibles, their properties, and applications.

Find out more
Precision Ceramics in Semiconductor Applications

Precision Ceramics in Semiconductor Applications

Exploring the use of precision ceramics in semiconductor equipment, their properties, and manufacturing processes.

Find out more
Applications and Advances in Vacuum Hot Press Sintering Furnaces for Precision Ceramics

Applications and Advances in Vacuum Hot Press Sintering Furnaces for Precision Ceramics

Explores the use of vacuum hot press sintering for advanced ceramics, metal/ceramic welding, and industry trends.

Find out more
New Rapid Sintering Technologies for Advanced Ceramics

New Rapid Sintering Technologies for Advanced Ceramics

Explores advanced ceramic materials, their properties, and various rapid sintering techniques to enhance their performance.

Find out more
Advancements in Engineering Ceramic Materials

Advancements in Engineering Ceramic Materials

Explores new engineering ceramics with exceptional properties and applications in harsh environments, comparing them to traditional materials.

Find out more
Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

Comparison of Pyrolytic Graphite and Pyrolytic Boron Nitride Crucibles

A detailed comparison of pyrolytic graphite and pyrolytic boron nitride crucibles, focusing on their preparation processes, characteristics, and applications.

Find out more
Precision Ceramic Materials for Energy Conversion Applications

Precision Ceramic Materials for Energy Conversion Applications

Overview of various ceramic materials used in energy conversion technologies, including heaters, piezoelectric ceramics, and solid oxide fuel cells.

Find out more