Products Lab Consumables & Materials Electrochemical Consumables High Purity Metal Sheets - Gold / Platinum / copper / iron etc...
High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

Electrochemical Consumables

High Purity Metal Sheets - Gold / Platinum / copper / iron etc...

Item Number : ELEGB

Price varies based on specs and customizations


$59.90 / set


Specification
customized
Purity
99.99%
Material
customized
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

High-purity sheet metal, Gold / Platinum / copper / iron etc...Can be used in fields such as electrochemistry

Technical specifications

Specification customized
Applicable temperature range 0 ~ 60℃
Purity 99.99%
Material customized

Detail & Parts

High Purity Metal Sheets detail 1

High Purity Metal Sheets detail 2High Purity Metal Sheets detail 3High Purity Metal Sheets detail 4High Purity Metal Sheets detail 5High Purity Metal Sheets detail 6

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What is an electrode in electrochemistry?

An electrode is a solid electrical conductor that serves as the point where current enters and leaves the electrolyte in an electrochemical cell. When the current leaves the electrode, it is called the cathode, and when it enters, it is called the anode. Electrodes are essential components of electrochemical cells, transporting produced electrons from one half-cell to another, which produces an electrical charge. The charge is based on a standard electrode system (SHE) with a reference potential of 0 volts and serves as a medium for any cell potential calculation.

What is the function of auxiliary electrode?

The auxiliary electrode, also known as the counter electrode, is an electrode used in a three-electrode electrochemical cell for voltammetric analysis or other reactions where an electric current is expected to flow. Its primary function is to provide a pathway for current flow in the electrochemical cell without passing a significant current through the reference electrode. It provides a means of applying input potential to the working electrode. The auxiliary electrode may be isolated from the working electrode to prevent any byproducts generated from contaminating the main test solution. It is often fabricated from electrochemically inert materials such as gold, platinum, or carbon.

What are the 3 electrodes in electrochemistry?

The three electrodes commonly used in electrochemistry are the Working Electrode (WE), Reference Electrode (RE), and Counter Electrode (CE). The WE is where the electrochemical reaction occurs and the current is measured. The RE provides a stable reference potential for the measurement. The CE completes the circuit and balances the charge between the WE and RE. Proper preparation and use of each electrode is crucial for accurate electrochemical experiments.

What is the difference between auxiliary and reference electrode?

The main difference between auxiliary and reference electrode lies in their function in an electrochemical cell. The auxiliary electrode, also known as the counter electrode, is used to facilitate charge transfer to and from the analyte and pass all the current so that the current at the working electrode can be controlled. On the other hand, the reference electrode is used to reference when measuring and controlling the potential of the working electrode and does not pass any current. The reference electrode has a fixed potential, while the potential of the auxiliary electrode can change.

What are the different types of electrochemical electrodes?

There are several types of electrochemical electrodes, each designed for specific applications. The most common types include working electrodes, reference electrodes, and counter electrodes. Working electrodes are the primary electrodes where the electrochemical reaction of interest takes place. Reference electrodes provide a stable reference potential against which the working electrode potential can be measured. Counter electrodes complete the circuit by providing a site for the flow of electrons to balance out the current passing through the working electrode.

What materials are commonly used for auxiliary electrodes?

The choice of materials for auxiliary electrodes depends on the specific electrochemical system and the desired reaction. Common materials for auxiliary electrodes include platinum, graphite, stainless steel, and certain metal alloys. These materials are typically inert and do not participate in the desired electrochemical reaction, ensuring that the auxiliary electrode's role remains solely as a conductor for current flow.

What materials are commonly used for electrochemical electrodes?

Various materials can be used for electrochemical electrodes depending on the specific application and requirements. Common materials include noble metals such as platinum, gold, and silver, which provide excellent conductivity and chemical stability. Carbon-based materials like graphite or glassy carbon are also commonly used due to their high surface area and good electrical properties. Additionally, metal oxides, conductive polymers, and composite materials are employed for specific applications that necessitate unique properties such as catalytic activity or selectivity.

How do auxiliary electrodes affect the performance of an electrochemical cell?

Auxiliary electrodes play a crucial role in the performance of electrochemical cells. They help maintain a balanced electrical potential, minimizing side reactions or unwanted reactions at the working electrode. The choice of appropriate materials for the auxiliary electrode is essential to prevent contamination or interference with the desired electrochemical process. Additionally, the design and positioning of the auxiliary electrode within the cell can impact overall efficiency and uniformity of current distribution. Proper selection and placement of auxiliary electrodes can enhance the performance, accuracy, and reproducibility of electrochemical measurements or processes.

What factors should be considered when selecting an electrochemical electrode?

When selecting an electrochemical electrode, several factors should be considered. The choice of electrode material is crucial, as it determines the electrode's conductivity, stability, and catalytic activity. The electrode size and geometry should match the specific experimental setup and requirements. Consideration should also be given to the compatibility of the electrode material with the electrolyte and the potential range of the electrochemical system. Additionally, cost, availability, and ease of fabrication should be taken into account when selecting an electrode for practical applications.

Why are auxiliary electrodes necessary in electrochemical systems?

Auxiliary electrodes are necessary in electrochemical systems to maintain electrical neutrality and ensure the flow of current. In many electrochemical reactions, the desired reaction occurs at the working electrode, while the auxiliary electrode acts as a counterbalance. It helps to complete the circuit by providing a path for the flow of electrons or ions, thereby allowing the continuous movement of charge and ensuring the overall electrochemical reaction proceeds smoothly and efficiently.

How can electrochemical electrodes be used in various applications?

Electrochemical electrodes find applications in a wide range of fields, including energy storage and conversion, corrosion analysis, sensors and biosensors, electroplating, and water treatment. They are used in batteries and fuel cells to facilitate the electrochemical reactions that store and convert energy. Electrochemical sensors and biosensors utilize electrodes to detect and measure analytes in various samples. Electroplating and electrorefining processes rely on electrodes to deposit or extract metal ions. Additionally, electrochemical electrodes are employed in electrochemical machining, electroanalysis, and many other research and industrial applications that involve studying or manipulating electrochemical phenomena.

Are there any limitations or considerations when using auxiliary electrodes?

When using auxiliary electrodes, several limitations and considerations should be taken into account. The choice of materials for the auxiliary electrode is critical to prevent any unwanted reactions or contamination that could affect the desired electrochemical process. Compatibility between the auxiliary electrode and the electrolyte or reactants should be considered to ensure stability and long-term performance. Additionally, the design and positioning of the auxiliary electrode should be carefully optimized to minimize current distribution issues or potential interference with the working electrode. It is also essential to regularly monitor and maintain the auxiliary electrode to prevent degradation or contamination that could impact its performance. Finally, the size and shape of the auxiliary electrode should be considered to ensure compatibility with the specific electrochemical cell or system being used.
View more faqs for this product

4.7

out of

5

KINTEK SOLUTION's high purity metal sheets are a lifesaver for our lab. They're always delivered on time and the quality is top-notch.

Katrine Delacruz

4.8

out of

5

I've been using KINTEK SOLUTION's high purity metal sheets for years and I've never been disappointed. They're the best in the business.

Jonas Khoo

4.9

out of

5

The purity of KINTEK SOLUTION's high purity metal sheets is unmatched. They're perfect for our research and development projects.

Maria Rodriguez

4.6

out of

5

I'm always impressed with the durability of KINTEK SOLUTION's high purity metal sheets. They last for years, even with heavy use.

Oliver Chen

4.7

out of

5

The technological advancement of KINTEK SOLUTION's high purity metal sheets is amazing. They're always coming up with new and innovative ways to improve their products.

Aisha Khan

4.8

out of

5

KINTEK SOLUTION's high purity metal sheets are the best value for money. You won't find a better deal anywhere else.

Liam Brown

4.9

out of

5

I'm so glad I switched to KINTEK SOLUTION's high purity metal sheets. They've made a huge difference in the quality of our research.

Isabella Garcia

4.6

out of

5

KINTEK SOLUTION's high purity metal sheets are the perfect choice for our lab. They're reliable, durable, and affordable.

Alexander Johnson

4.7

out of

5

I've been recommending KINTEK SOLUTION's high purity metal sheets to all my colleagues. They're simply the best.

Emma White

4.8

out of

5

KINTEK SOLUTION's high purity metal sheets are a game-changer for our lab. We've seen a significant improvement in our research results.

Jacob Smith

4.9

out of

5

I'm so grateful for KINTEK SOLUTION's high purity metal sheets. They've made my research so much easier and more efficient.

Olivia Jones

4.6

out of

5

KINTEK SOLUTION's high purity metal sheets are the gold standard. I wouldn't use anything else in my lab.

Ethan Williams

4.7

out of

5

I'm a huge fan of KINTEK SOLUTION's high purity metal sheets. They're the perfect combination of quality, durability, and affordability.

Sophia Martinez

4.8

out of

5

KINTEK SOLUTION's high purity metal sheets are the best I've ever used. They're worth every penny.

Matthew Brown

4.9

out of

5

I'm so glad I made the switch to KINTEK SOLUTION's high purity metal sheets. They've made a world of difference in my research.

Emily Carter

4.6

out of

5

KINTEK SOLUTION's high purity metal sheets are the best in the business. I highly recommend them to anyone looking for high-quality metal sheets.

Lucas Garcia

4.7

out of

5

I'm so impressed with KINTEK SOLUTION's high purity metal sheets. They're the perfect choice for my lab.

Isabella Rodriguez

PDF of ELEGB

Download

Catalog of Electrochemical Consumables

Download

Catalog of Electrochemical Electrode

Download

Catalog of Auxiliary Electrode

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Electrode Fixture

Electrode Fixture

Upgrade your experiments with our customizable Electrode Fixtures. High-quality materials, acid and alkali resistant, and safe and durable. Discover our complete models today.

Graphite Disc Electrode Graphite Rod Graphite Sheet Electrode

Graphite Disc Electrode Graphite Rod Graphite Sheet Electrode

High-quality graphite electrodes for electrochemical experiments. Complete models with acid and alkali resistance, safety, durability, and customization options.

metal disk electrode

metal disk electrode

Elevate your experiments with our Metal Disk Electrode. High-quality, acid and alkali resistant, and customizable to fit your specific needs. Discover our complete models today.

Glassy carbon electrode

Glassy carbon electrode

Upgrade your experiments with our Glassy Carbon Electrode. Safe, durable, and customizable to fit your specific needs. Discover our complete models today.

sample support body

sample support body

Improve your electrochemical tests with our Sample Support Body. High-quality and reliable for accurate results. Upgrade your research today.

gold disc electrode

gold disc electrode

Looking for a high-quality gold disc electrode for your electrochemical experiments? Look no further than our top-of-the-line product.

Platinum disc electrode

Platinum disc electrode

Upgrade your electrochemical experiments with our Platinum Disc Electrode. High-quality and reliable for accurate results.

Glassy carbon sheet - RVC

Glassy carbon sheet - RVC

Discover our Glassy Carbon Sheet - RVC. Perfect for your experiments, this high-quality material will elevate your research to the next level.

Platinum sheet electrode

Platinum sheet electrode

Elevate your experiments with our Platinum Sheet Electrode. Crafted with quality materials, our safe and durable models can be tailored to fit your needs.

Platinum Auxiliary Electrode

Platinum Auxiliary Electrode

Optimize your electrochemical experiments with our Platinum Auxiliary Electrode. Our high-quality, customizable models are safe and durable. Upgrade today!

Gold sheet electrode

Gold sheet electrode

Discover high-quality gold sheet electrodes for safe and durable electrochemical experiments. Choose from complete models or customize to meet your specific needs.

Related Articles

Applications of Electrolytic Cells in Purification and Electroplating

Applications of Electrolytic Cells in Purification and Electroplating

Electrolytic cells are chemical cells that use electricity to generate a non-spontaneous redox reaction. These cells are used in various electrochemical processes such as electrolysis and electroplating.

Find out more
Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Advanced Electrolytic Cell Techniques for Cutting-Edge Lab Research

Electrolytic cells are devices that utilize an electric current to induce a non-spontaneous chemical reaction.

Find out more
Reference Electrodes: Calomel, Silver Chloride, and Mercury Sulfate - A Comprehensive Guide

Reference Electrodes: Calomel, Silver Chloride, and Mercury Sulfate - A Comprehensive Guide

Explore the world of reference electrodes, including calomel, silver chloride, and mercury sulfate. Understand their construction, principles, and applications in electrochemical measurements.

Find out more
Electrochemical Consumables: A Comprehensive Guide to Materials, Applications, and Selection

Electrochemical Consumables: A Comprehensive Guide to Materials, Applications, and Selection

Discover the world of electrochemical consumables, including types of electrodes (working, auxiliary, and reference) and electrolytes, as well as factors to consider when selecting materials for your electrochemical experiments or applications.

Find out more
Applications of H-Type Electrolytic Cell in Metal Extraction

Applications of H-Type Electrolytic Cell in Metal Extraction

H-type electrolytic cells uses an electrolyte solution to dissolve the metal ions and an electric current to separate the metal ions from the solution.

Find out more
How to Choose the Right Electrochemical Electrode

How to Choose the Right Electrochemical Electrode

The choice of electrode material can have a significant impact on the performance of the electrochemical system.

Find out more
How Isostatic Presses Help Eliminate Defects in Materials

How Isostatic Presses Help Eliminate Defects in Materials

Isostatic pressing is a manufacturing process that is used to eliminate defects in materials.

Find out more
Electrochemical Electrodes in Chemical Analysis

Electrochemical Electrodes in Chemical Analysis

Electrochemical electrodes are essential tools used in many chemical analysis techniques and experiments. These electrodes are devices that allow us to measure the electrical potential difference in a chemical reaction.

Find out more
Understanding the Features and Functions of Laboratory Press

Understanding the Features and Functions of Laboratory Press

Laboratory presses are essential equipment in various industries, offering precise and controlled sample preparation for testing and research purposes. These presses come with a range of features and functions that ensure reliable and consistent results. Understanding the capabilities of laboratory presses is crucial for businesses looking to optimize their sample preparation processes. From uniform temperature distribution to mechanical solidity, these presses offer a comprehensive solution for consistent sample thickness and closure force.

Find out more
Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Understanding Electrolytic Cells and Their Role in Copper Purification and Electroplating

Electrolytic cells play a crucial role in various industrial processes, including copper purification and electroplating. These cells utilize an external power source to drive chemical reactions, resulting in the decomposition of substances. Through the process of electrolysis, an electric current is passed through a liquid or solution containing ions, causing them to break down.

Find out more
Electrode Fixture Guide: Types, Design, and Applications

Electrode Fixture Guide: Types, Design, and Applications

Discover the comprehensive guide to electrode fixtures, covering various types, design considerations, and their indispensable role in industries like electroplating, welding, and electrochemical cells.

Find out more
How To Turn XRF analysis sample preparation Into Success

How To Turn XRF analysis sample preparation Into Success

In X-ray fluorescence (XRF) analysis, sample preparation is an important step because it can significantly impact both the quality and the efficiency of the analysis.

Find out more