Products Lab Consumables & Materials PTFE material PTFE digestion tank/microwave digestion tank/reactor
PTFE digestion tank/microwave digestion tank/reactor

PTFE material

PTFE digestion tank/microwave digestion tank/reactor

Item Number : PTFE-37

Price varies based on specs and customizations


Material
PTFE
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Features

PTFE digestion tanks are integral components in laboratory settings, particularly in applications involving harsh chemical environments and high temperatures. These tanks are designed to withstand extreme conditions while ensuring safety and efficiency in chemical processing. Here are the key features of PTFE digestion tanks, focusing on their benefits to the user:

  • High-Temperature Resistance: PTFE digestion tanks can operate in temperatures ranging from -200°C to +250°C, making them suitable for a wide range of thermal processes. This feature ensures that the tanks can handle high-temperature digestions without degrading, thereby maintaining their structural integrity and performance over time.
  • Exceptional Corrosion Resistance: With the ability to resist strong acids, strong alkalis, aqua regia, and various organic solvents, PTFE digestion tanks are ideal for use in environments where chemical resistance is crucial. This property prevents any dissolution, adsorption, or precipitation phenomena, ensuring that the tanks do not react with the chemicals being processed, thus preserving the purity and integrity of the samples.
  • Low Coefficient of Friction: PTFE's inherent low friction coefficient reduces wear and tear on the tank surfaces, enhancing the longevity of the equipment. This feature is particularly beneficial in stirring and mixing applications, where the smooth surface of the PTFE ensures efficient and gentle handling of the samples.
  • Chemical Inertness: PTFE digestion tanks are highly inert, meaning they do not interact with or contaminate the samples being processed. This is crucial in applications where sample purity is paramount, such as in biological cultures or analytical chemistry.
  • Optical Clarity: For applications where visibility into the digestion process is necessary, PTFE tanks offer optical clarity. This allows for real-time monitoring of the digestion process without the need to open the tank, which could introduce contaminants or disrupt the process.
  • Easy to Sterilize: PTFE digestion tanks can be easily sterilized, making them suitable for use in microbiological applications. This feature ensures that the tanks can be reused without the risk of cross-contamination between experiments.
  • Durability and Safety: The robust construction of PTFE digestion tanks ensures they can withstand the rigors of frequent use in harsh environments. Additionally, their non-reactive nature makes them safe for handling a wide range of hazardous chemicals.

These features make PTFE digestion tanks an essential tool in laboratories where chemical resistance, temperature stability, and sample integrity are critical. Their versatility and reliability contribute to efficient and safe laboratory operations across various scientific disciplines.

Details & Parts

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

PTFE digestion tank

Technical specifications

Model Diameter(mm) Height(mm)
30ml 49.5 109
50ml 55 114
100ml 65 124
200ml 74.5 143

Please consult for other sizes, customization is accepted.

Advantages

  • Chemical Resistance: PTFE digestion tanks are highly resistant to both acids and alkalis, as well as various organic solvents, making them ideal for handling highly corrosive materials in laboratory settings.
  • Temperature Tolerance: With a high working temperature range up to 260ºC, PTFE tanks can withstand extreme heat, ensuring stability and safety during high-temperature experiments.
  • Non-Reactivity: PTFE is a super stable material that does not react chemically with any substances, ensuring that it will not contaminate or alter the chemical composition of the samples being processed.
  • Low Friction Coefficient: The low friction coefficient of PTFE makes it an excellent anti-friction material, reducing wear and tear and enhancing the longevity of the equipment.
  • Durability and Longevity: PTFE digestion tanks are known for their excellent durability and long service life, even under continuous use at high temperatures.
  • Easy to Clean and Sterilize: The non-stick surface of PTFE makes these tanks easy to clean and sterilize, reducing the risk of cross-contamination in the laboratory.
  • Optically Clear: PTFE digestion tanks are optically clear, allowing for clear visibility of the contents during experiments, which is crucial for accurate observation and analysis.
  • Flame Retardant: PTFE materials are flame retardant, adding an extra layer of safety in laboratory environments where flammable substances are often used.
  • Versatility: PTFE digestion tanks are versatile and can be used in a wide range of applications, from chemical processing to biological experiments, due to their broad compatibility and stability.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What are the main types of rubber processing machines?

The main types of rubber processing machines include twin screw extruders, plate vulcanizing presses, open mixing mills, small lab rubber calendering machines, lab internal rubber mixers, lab plastic PVC calenders, automatic high temperature heat presses, and more. Each type is designed for specific tasks such as mixing, vulcanizing, calendering, and extruding rubber materials.

What are the advantages of using PTFE in the hydrogen energy industry?

In the hydrogen energy industry, PTFE is used for sealing in alkaline electrolyzers and enhancing proton exchange membranes. Its properties ensure safety, reliability, and long service life, even under complex operating conditions.

Can PTFE be modified for specific applications?

Yes, PTFE can be filled and modified with reinforcing fillers like glass fiber, alumina, and graphite to enhance its compression resilience and creep relaxation, making it suitable for specific applications such as sealing gaskets in alkaline electrolyzers.

What are the benefits of using PTFE Petri Dish Liners?

PTFE Petri Dish Liners are chemically compatible with most chemicals, including hydrofluoric acid. They are extremely inert, easy to sterilize, optically clear, and do not break like glass. They can withstand extreme environments and do not contaminate culture cells.

What are the advantages of using ceramic crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

What are the common applications of alumina crucibles?

Alumina crucibles have diverse applications in industries such as metallurgy, ceramics, chemistry, and materials research. They are commonly used for high-temperature processes, including melting, calcination, and sintering of metals, alloys, and ceramics. Alumina crucibles are also utilized in the production of catalysts, glass, and advanced materials. In laboratories, they are used for sample preparation, heating, and chemical reactions. Additionally, alumina crucibles find applications in thermal analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

What is the principle of operation for a twin screw extruder plastic granulation machine?

A twin screw extruder plastic granulation machine operates by mixing and processing raw materials like engineering plastics, modified plastics, waste plastics, and masterbatches through a twin screw mechanism. This machine ensures thorough mixing and processing for various plastic materials.

What are some common uses of ceramic crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

What are the advantages of using alumina crucibles?

Alumina crucibles offer several advantages in high-temperature applications. Firstly, they have excellent thermal shock resistance, allowing them to withstand rapid heating and cooling without cracking. Alumina crucibles also have high chemical resistance, making them suitable for use with acids, bases, and other corrosive materials. They have low electrical conductivity, which is beneficial for preventing electrical interference in certain applications. Alumina crucibles are also inert and do not react with most substances, ensuring the purity of the materials being processed. Additionally, they have a long lifespan and can withstand repeated use at high temperatures.

What is the purpose of a plate vulcanizing press in rubber processing?

A plate vulcanizing press is used for the vulcanization of rubber products. Vulcanization is a critical process in rubber manufacturing that improves the material's strength, elasticity, and resistance to heat and chemicals.

How can I choose the right ceramic crucible for my application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

How should alumina crucibles be handled and maintained?

Proper handling and maintenance of alumina crucibles are crucial to ensure their longevity and optimal performance. When handling, it is important to avoid dropping or impacting the crucibles to prevent cracking or damage. They should be stored in a clean and dry environment to avoid contamination. Regular cleaning of the crucibles is necessary to remove any residual materials or impurities. This can be done using a soft brush, mild detergent, or solvents suitable for alumina. It is recommended to preheat the crucibles before use, especially when subjected to rapid temperature changes, to prevent thermal shock. Crucibles should be inspected for cracks, erosion, or other damage, and if any issues are found, they should be replaced to maintain the quality of the materials being processed. Following the manufacturer's guidelines for maintenance and handling is essential.

How does an open mixing mill for rubber work?

An open mixing mill for rubber works by mixing and dispersing rubber, plastic raw materials, pigments, masterbatches, and other high molecular polymers. The machine consists of two rollers that rotate in opposite directions, ensuring uniform mixing and dispersion of the materials.

How should ceramic crucibles be handled and maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.

What are the advantages of using a lab internal rubber mixer?

A lab internal rubber mixer offers advantages such as efficient mixing, kneading, and dispersing of various chemical raw materials like plastics, rubber, synthetic rubber, and low-viscosity materials. It is particularly useful for laboratory settings where precise control and small batch processing are required.

What applications does a small lab rubber calendering machine have?

A small lab rubber calendering machine is used for producing thin, continuous sheets of plastic or rubber materials. It is commonly employed in laboratories and small-scale production facilities for creating films, coatings, and laminates with precise thickness and surface finish.

How does an automatic high temperature heat press machine function?

An automatic high temperature heat press machine is designed for pressing, sintering, and processing materials in a high temperature environment. It can operate at temperatures ranging from hundreds to thousands of degrees Celsius, making it suitable for various high temperature process requirements.

What makes a lab blown film extrusion machine useful?

A lab blown film extrusion machine is useful for detecting the feasibility of film blowing of polymer materials, assessing the colloid condition in the materials, and evaluating the dispersion of colored dispersions and extrudates. It is essential for research and development in polymer processing.
View more faqs for this product

4.7

out of

5

Unmatched durability and chemical resistance. A game-changer in lab efficiency!

Ana Silva

4.8

out of

5

Optically clear and easy to clean. Perfect for detailed observations.

Hiroshi Tanaka

4.9

out of

5

High-temperature tolerance is impressive. No issues even under extreme heat.

Elena Petrova

4.7

out of

5

Lightweight yet robust. Ideal for frequent use in harsh environments.

Carlos Mendoza

4.8

out of

5

Chemical inertness ensures no sample contamination. Highly reliable.

Sophie Dubois

4.9

out of

5

Flame retardant and safe. Adds peace of mind in the lab.

Liam O'Connor

4.7

out of

5

Versatile and adaptable. Fits perfectly in our diverse lab needs.

Isabella Rossi

4.8

out of

5

Low friction surface extends equipment life. Great investment.

Andreas Weber

4.9

out of

5

Easy to sterilize, crucial for preventing cross-contamination.

Mia Karlsson

4.7

out of

5

Excellent value for money. Quality exceeds expectations.

Fatemeh Alavi

4.8

out of

5

Speedy delivery and well-packaged. No damage on arrival.

Rajesh Patel

4.9

out of

5

Technologically advanced. Enhances our lab's capabilities significantly.

Nina Petrovic

4.7

out of

5

Durable and safe. A must-have for any serious lab.

Eduardo Gomez

PDF - PTFE digestion tank/microwave digestion tank/reactor

Download

Catalog of Ptfe Material

Download

Catalog of Ceramic Crucible

Download

Catalog of Alumina Crucible

Download

Catalog of Rubber Processing Machine

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

PTFE container

PTFE container

PTFE container is a container with excellent corrosion resistance and chemical inertness.

Explosive Proof Hydrothermal Synthesis Reactor

Explosive Proof Hydrothermal Synthesis Reactor

Enhance your lab reactions with Explosive Proof Hydrothermal Synthesis Reactor. Corrosion-resistant, safe, and reliable. Order now for faster analysis!

PTFE Beaker/PTFE Beaker lids

PTFE Beaker/PTFE Beaker lids

The PTFE beaker is a laboratory container that is resistant to acid, alkali, high and low temperatures and is suitable for temperatures ranging from -200ºC to +250ºC. This beaker has excellent chemical stability and is widely used for heat treatment samples and volume analysis.

Hydrothermal Synthesis Reactor

Hydrothermal Synthesis Reactor

Discover the applications of Hydrothermal Synthesis Reactor - a small, corrosion-resistant reactor for chemical labs. Achieve rapid digestion of insoluble substances in a safe and reliable way. Learn more now.

PTFE measuring cylinder/high temperature resistant/corrosion resistant/acid and alkali resistant

PTFE measuring cylinder/high temperature resistant/corrosion resistant/acid and alkali resistant

PTFE cylinders are a rugged alternative to traditional glass cylinders. They are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance and maintain a low coefficient of friction, ensuring ease of use and cleaning.

PTFE centrifuge tube rack

PTFE centrifuge tube rack

The precision-made PTFE test tube racks are completely inert and, due to the high temperature properties of PTFE, these test tube racks can be sterilized (autoclaved) without any problems.

PTFE flask/PTFE three-necked flask/PTFE round bottom flask

PTFE flask/PTFE three-necked flask/PTFE round bottom flask

PTFE flask, is a versatile laboratory container made from polytetrafluoroethylene (PTFE), offering exceptional chemical resistance, temperature stability, and non-stick properties. Ideal for handling corrosive substances and high-temperature applications, these flasks are essential in various laboratory procedures, including heating, mixing, and storage of chemicals.

PTFE recyclers/Magnetic stirring bar recyclers

PTFE recyclers/Magnetic stirring bar recyclers

This product is used for stirrer recovery, and is resistant to high temperature, corrosion, and strong alkali, and is almost insoluble in all solvents. The product has a stainless steel rod inside and a polytetrafluoroethylene sleeve outside.

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE Centrifuge Tube/laboratory pointed bottom/round bottom/flat bottom

PTFE centrifugal tubes are highly valued for their exceptional chemical resistance, thermal stability, and non-stick properties, making them indispensable in various high-demand sectors. These tubes are particularly useful in environments where exposure to corrosive substances, high temperatures, or stringent cleanliness requirements are prevalent.

PTFE culture dish/evaporation dish/cell bacteria culture dish/acid and alkali resistant and high temperature resistant

PTFE culture dish/evaporation dish/cell bacteria culture dish/acid and alkali resistant and high temperature resistant

The Polytetrafluoroethylene (PTFE) culture dish evaporating dish is a versatile laboratory tool known for its chemical resistance and high-temperature stability. PTFE, a fluoropolymer, offers exceptional non-stick properties and durability, making it ideal for various applications in research and industry, including filtration, pyrolysis, and membrane technology.

Laboratory high temperature PTFE mixing paddle mixer

Laboratory high temperature PTFE mixing paddle mixer

The PTFE mixing paddle mixer is a versatile and robust tool designed for laboratory use, particularly in environments requiring high resistance to chemicals and extreme temperatures. Crafted from high-quality PTFE, this mixer boasts several key features that enhance its functionality and durability.

Stainless High Pressure Reactor

Stainless High Pressure Reactor

Discover the versatility of Stainless High Pressure Reactor - a safe and reliable solution for direct and indirect heating. Built with stainless steel, it can withstand high temperatures and pressures. Learn more now.

Hydrothermal Synthesis Reactor for Polytetrafluoroethylene Carbon Paper and Carbon Cloth Nano-growth

Hydrothermal Synthesis Reactor for Polytetrafluoroethylene Carbon Paper and Carbon Cloth Nano-growth

Acid and alkali resistant polytetrafluoroethylene experimental fixtures meet different requirements. The material is made of brand new polytetrafluoroethylene material, which has excellent chemical stability, corrosion resistance, airtightness, high lubricity and non-stickiness, electrical corrosion and good anti-aging ability, and can work for a long time at temperatures from -180℃ to +250℃.

PTFE triangular bottle/Triangular bottle with lid/Conical flask

PTFE triangular bottle/Triangular bottle with lid/Conical flask

The PTFE Triangle Bottle, also known as a Teflon reagent bottle, is a robust, chemical-resistant alternative to traditional glass bottles, suitable for handling both acids and alkalis. These bottles are unbreakable, lightweight, and feature a leak-proof screw cap, making them ideal for laboratory use.

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

The PTFE Reagent Bottle, also known as PTFE Chemical Bottles or Teflon Reagent Bottle, is a robust alternative to traditional glass reagent bottles. These bottles are highly resistant to both acids and alkalis, featuring a leak-proof screw cap. Ideal for laboratory use, they offer excellent chemical resistance, high temperature capabilities up to 260°C, and superior durability.

PTFE crucible/with lid

PTFE crucible/with lid

PTFE crucibles, made from pure Teflon, offer chemical inertness and resistance from -196°C to 280°C, ensuring compatibility with a wide range of temperatures and chemicals. These crucibles feature machine-finished surfaces for easy cleaning and prevention of contamination, making them ideal for precise laboratory applications.

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

The PTFE Volumetric Flask, a robust alternative to glass and PP flasks, excels in measuring both acidic and alkaline liquids. Characterized by its chemical inertness, translucency, and wide volume options, this flask ensures a non-leachable, ultra-clean background. Its non-stick surface simplifies cleaning and maintenance, making it ideal for harsh laboratory conditions.

PTFE cleaning rack/PTFE flower basket Cleaning flower basket Corrosion-resistant

PTFE cleaning rack/PTFE flower basket Cleaning flower basket Corrosion-resistant

The PTFE cleaning rack, also known as the PTFE flower basket cleaning flower basket, is a specialized laboratory tool designed for the efficient cleaning of PTFE materials. This cleaning rack ensures thorough and safe cleaning of PTFE items, maintaining their integrity and performance in laboratory settings.