Products Lab Consumables & Materials PTFE material PTFE crucible/with lid
PTFE crucible/with lid

PTFE material

PTFE crucible/with lid

Item Number : PTFE-29

Price varies based on specs and customizations


Material
PTFE
Specification
See the form
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

Polytetrafluoroethylene (PTFE) crucibles are renowned for their exceptional chemical resistance and thermal stability, making them ideal for a variety of laboratory and industrial applications. These crucibles are particularly useful in environments where the containment of highly corrosive substances is required, as PTFE's inert nature prevents chemical reactions with the contents. Below are the main application areas of PTFE crucibles:

  • Chemical Analysis: PTFE crucibles are extensively used in chemical analysis labs for the dissolution and precipitation of samples, especially when dealing with aggressive acids and bases.
  • High-Temperature Evaporation:  PTFE crucibles are employed due to their ability to withstand high temperatures without degradation, ensuring the integrity of the evaporation process.
  • Material Research: They are crucial in material research labs where the study of material properties under controlled environments is essential.
  • Pharmaceutical Testing: In the pharmaceutical industry, PTFE crucibles are used for the stability testing of drugs and the analysis of drug components.
  • Environmental Studies: Due to their inert nature, these crucibles are suitable for environmental studies involving the analysis of pollutants and their reactions under various conditions.
  • Recycling Processes: PTFE crucibles play a role in processes like mechanical crushing, radiation cracking, and thermal decomposition, where the containment of PTFE materials is necessary for recycling.

These applications highlight the versatility and robustness of PTFE crucibles in various scientific and industrial settings, emphasizing their importance in maintaining the integrity of chemical and physical processes.

Features

PTFE crucibles, crafted from pure PTFE, offer a range of features that are particularly beneficial for laboratory applications requiring chemical inertness and resistance to a wide temperature range. These crucibles are designed to withstand cryogenic temperatures up to moderate heat, making them versatile for various scientific processes. Key features include:

  • Temperature Compatibility: Operable from -196°C to 280°C (-321 to 536°F), these crucibles are suitable for both cryogenic and moderate heating applications, ensuring flexibility in various experimental setups.
  • Chemical Inertness: Being chemically inert, PTFE crucibles do not react with most laboratory chemicals, including strong acids, strong alkalis, aqua regia, and organic solvents, thereby preventing contamination of samples.
  • Durability: The crucibles are crack-free, ensuring long-term use without the risk of sudden failure during critical experiments.
  • Ease of Cleaning: With machine-finished surfaces, these crucibles offer a smooth, pure white appearance that not only looks professional but also facilitates easy cleaning, reducing the risk of cross-contamination between experiments.
  • Inclusion of Covers: The crucibles come with covers, which are essential for maintaining the integrity of samples and preventing contamination from airborne particles.

These features make PTFE crucibles an excellent choice for laboratories where precision, safety, and efficiency are paramount. The combination of chemical resistance, temperature versatility, and durability ensures that these crucibles meet the rigorous demands of modern scientific research.

Details & Parts

PTFE Crucible

PTFE Crucible

PTFE Crucible

PTFE Crucible

PTFE Crucible

Technical specifications

PTFE crucible (ordinary):

Model Cup outer diameter(mm) Inner diameter of cup mouth(mm) Bottom outer diameter(mm) Height(mm) Height cover(mm) Wall thickness(mm)
20ml 37 33 29 39 52 2
30ml 48 44 31 45 61 2
50ml 58 54 38 42 58 2
100ml 62 58 43 59 80 2
250ml 78 72 50 88 105 2

PTFE crucible special cover:

Model Cover outer diameter(mm) Cover inner ring outer diameter(mm) The widest diameter of the handle(mm) Cover thickness(mm)
Applicable to 20ml crucible 42 31 12 2
Applicable to 30ml crucible 53 41 11 3
Applicable to 50ml crucible 64 47 11 3
Applicable to 100ml crucible 68 54 11 3.5
Applicable to 250ml ordinary crucible 93 70 11 3.5
Applicable to 250ml thick crucible 92 73 11 4

PTFE crucible (thickened):

Model Cup outer diameter(mm) Inner diameter of cup mouth(mm) Bottom outer diameter(mm) Height(mm) Height cover(mm) Wall thickness(mm)
30ml 49 43 32 46 61 3~4
50ml 58 52 38 42 59 3~4
100ml 61 55 42 58 79 3
250ml 82 74 45 77 96 4~5

The size is for reference only, please refer to the actual product.

Advantages

PTFE crucibles offer a multitude of advantages that make them a superior choice for laboratory applications, especially when handling corrosive substances and high temperatures. Here are the key benefits:

  • Chemical Resistance: PTFE crucibles are highly resistant to most chemicals, including hydrofluoric acid. This makes them ideal for use in environments where other materials might degrade or react with the substances being tested.
  • Inertness: The inert nature of PTFE ensures that it does not contaminate the samples, making it suitable for use with sensitive culture cells such as bacteria or mosses. This feature is crucial for maintaining the integrity of experimental results.
  • High Temperature Resistance: Capable of withstanding temperatures up to 260ºC, PTFE crucibles are suitable for a wide range of high-temperature applications. This durability ensures that they can be used in various laboratory settings without the risk of melting or deforming.
  • Excellent Dielectric Properties: PTFE's exceptional dielectric properties make it a preferred choice for applications involving electrical insulation or where electrical properties of materials are being tested.
  • Corrosion Resistance: The material's inherent resistance to corrosion means that PTFE crucibles maintain their integrity and performance over time, even under harsh conditions.
  • Optically Clear: PTFE crucibles are optically clear, allowing for easy observation of contents without the need for additional lighting or invasive methods.
  • Ease of Sterilization: They can be easily sterilized, which is essential for maintaining aseptic conditions in biological and chemical experiments.
  • Unbreakable: Unlike glass crucibles, PTFE crucibles are unbreakable, reducing the risk of accidents and the need for frequent replacements.
  • Lightweight and Easy to Handle: Their lightweight nature makes PTFE crucibles easy to handle and maneuver, enhancing efficiency in the laboratory.
  • Machine Finished Surfaces: The machine-finished surfaces of PTFE crucibles facilitate easy cleaning and eliminate the risk of contamination, ensuring reliable and repeatable results.

These advantages make PTFE crucibles a versatile and reliable choice for laboratories dealing with a wide range of chemicals and temperatures, ensuring safety, efficiency, and accuracy in scientific research and testing.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

How Should PTFE Crucibles Be Cleaned?

PTFE crucibles feature a machine-finished surface that is designed to eliminate contamination and ease cleaning. They can be easily cleaned due to their smooth and pure white appearance.

How Are High-purity Graphite Crucibles Made?

High-purity graphite crucibles are typically manufactured through a process called isostatic pressing. In this method, graphite powder is placed in a rubber mold, and then subjected to high pressure from all directions. This pressure compacts the graphite particles into a dense and uniform crucible shape. The crucible is then heated to a high temperature to remove any impurities and improve its purity.

What Are The Common Applications Of Alumina Crucibles?

Alumina crucibles have diverse applications in industries such as metallurgy, ceramics, chemistry, and materials research. They are commonly used for high-temperature processes, including melting, calcination, and sintering of metals, alloys, and ceramics. Alumina crucibles are also utilized in the production of catalysts, glass, and advanced materials. In laboratories, they are used for sample preparation, heating, and chemical reactions. Additionally, alumina crucibles find applications in thermal analysis techniques such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA).

What Are The Advantages Of Using Ceramic Crucibles?

Ceramic crucibles offer several advantages over other types of crucibles. Firstly, they have excellent thermal resistance, allowing them to withstand high temperatures without cracking or warping. Ceramic crucibles are also chemically inert, meaning they do not react with most substances, making them suitable for a wide range of applications. They are also non-porous, ensuring that there is no contamination or absorption of materials during heating or melting processes. Ceramic crucibles are highly durable and long-lasting, making them a reliable choice for repeated use. Additionally, ceramic crucibles can be manufactured in various shapes and sizes to accommodate different experimental or industrial requirements.

What Are The Common Applications Of High-purity Graphite Crucibles?

High-purity graphite crucibles have a wide range of applications in industries such as metallurgy, foundries, and laboratories. They are commonly used for melting and casting non-ferrous metals, including aluminum, copper, and precious metals. High-purity graphite crucibles are also utilized in the production of alloys and high-temperature ceramics. They are essential in processes such as chemical analysis, spectroscopy, and sample preparation in laboratories. Additionally, these crucibles find applications in the semiconductor industry for the melting and growing of silicon and other semiconductor materials.

What Are The Advantages Of Using Alumina Crucibles?

Alumina crucibles offer several advantages in high-temperature applications. Firstly, they have excellent thermal shock resistance, allowing them to withstand rapid heating and cooling without cracking. Alumina crucibles also have high chemical resistance, making them suitable for use with acids, bases, and other corrosive materials. They have low electrical conductivity, which is beneficial for preventing electrical interference in certain applications. Alumina crucibles are also inert and do not react with most substances, ensuring the purity of the materials being processed. Additionally, they have a long lifespan and can withstand repeated use at high temperatures.

What Are Some Common Uses Of Ceramic Crucibles?

Ceramic crucibles have a wide range of applications across various industries. They are commonly used in laboratories for heating, melting, or calcining substances during experiments or sample preparations. Ceramic crucibles are also widely used in metal casting and alloy production processes, as they can withstand the high temperatures required for melting metals. They are used in the production of ceramics, glass, and semiconductors, where precise temperature control and chemical resistance are crucial. Additionally, ceramic crucibles find applications in the pharmaceutical and chemical industries, as well as in research and development, where they are used for analyzing and testing materials under extreme temperature conditions.

What Factors Should Be Considered When Selecting High-purity Graphite Crucibles?

When selecting high-purity graphite crucibles, several factors should be considered. Firstly, the size and capacity of the crucible should align with the intended application and the amount of material to be melted or processed. The crucible's thermal conductivity, thermal shock resistance, and chemical compatibility should be evaluated to ensure they meet the specific process requirements. It is important to select crucibles made from high-quality graphite material with high purity levels to minimize contamination and ensure excellent performance. The crucible's design and construction should also be considered, such as the presence of handles or pouring spouts for easy handling. Additionally, it is advisable to consult with manufacturers or experts in the field to ensure the selection of the most suitable high-purity graphite crucibles for specific applications.

How Should Alumina Crucibles Be Handled And Maintained?

Proper handling and maintenance of alumina crucibles are crucial to ensure their longevity and optimal performance. When handling, it is important to avoid dropping or impacting the crucibles to prevent cracking or damage. They should be stored in a clean and dry environment to avoid contamination. Regular cleaning of the crucibles is necessary to remove any residual materials or impurities. This can be done using a soft brush, mild detergent, or solvents suitable for alumina. It is recommended to preheat the crucibles before use, especially when subjected to rapid temperature changes, to prevent thermal shock. Crucibles should be inspected for cracks, erosion, or other damage, and if any issues are found, they should be replaced to maintain the quality of the materials being processed. Following the manufacturer's guidelines for maintenance and handling is essential.

How Can I Choose The Right Ceramic Crucible For My Application?

When choosing a ceramic crucible for a specific application, several factors should be considered. Firstly, the temperature range required for the application should be determined, as different types of ceramics have varying maximum temperature limits. It is important to select a crucible that can withstand the expected temperature without deformation or damage. Secondly, the size and capacity of the crucible should be considered to ensure it can accommodate the required quantity of material. The shape and design of the crucible should also be compatible with the experimental setup or industrial process. Additionally, the chemical compatibility of the crucible with the substances being used should be assessed to ensure there will be no adverse reactions or contamination. Consulting with suppliers or experts in the field can help in selecting the most suitable ceramic crucible for specific applications.

What Are The Common Materials Used For Evaporating Crucibles?

Evaporating crucibles are commonly made from materials such as tungsten, tantalum, molybdenum, graphite, or ceramic compounds. These materials have high melting points and good thermal conductivity, making them suitable for the high-temperature conditions required during evaporation. The choice of crucible material depends on factors such as the evaporant material, desired film properties, and process parameters.

How Should Ceramic Crucibles Be Handled And Maintained?

Proper handling and maintenance of ceramic crucibles are essential to ensure their longevity and performance. When handling ceramic crucibles, it is important to avoid dropping them or subjecting them to sudden temperature changes, as this can cause thermal shock and result in cracking or breakage. It is advisable to use appropriate tools, such as tongs or gloves, for handling hot crucibles. After use, ceramic crucibles should be allowed to cool down gradually before cleaning. Cleaning can be done using warm water and mild detergent, followed by rinsing and drying thoroughly. It is important to avoid using harsh chemicals or abrasive materials that can damage the ceramic surface. Regular inspection should be carried out to check for any signs of wear, cracks, or discoloration, and damaged crucibles should be replaced to ensure safety and accuracy in experiments or industrial processes.

What Are The Advantages Of Using Evaporating Crucibles?

Evaporating crucibles offer several advantages in thin film deposition processes. They provide a controlled environment for the evaporation of materials, allowing for precise control over film thickness and uniformity. Crucibles can withstand high temperatures and provide efficient heat transfer, ensuring consistent evaporation rates. They are available in various sizes and shapes to accommodate different evaporation systems and substrate configurations. Evaporating crucibles also allow for the deposition of a wide range of materials, including metals, semiconductors, and ceramics. They can be easily loaded and unloaded, facilitating quick material changes or process adjustments. Overall, evaporating crucibles are essential tools in thin film deposition techniques, offering versatility, reliability, and reproducibility.

How Should Evaporating Crucibles Be Handled And Maintained?

Evaporating crucibles should be handled and maintained with care to ensure their longevity and performance. Crucibles should be cleaned thoroughly before each use to remove any residual material from previous depositions. Avoid using abrasive materials that could damage the crucible's surface. During loading and unloading, handle crucibles with clean gloves or specialized tools to prevent contamination. When not in use, store crucibles in a dry and clean environment to avoid corrosion or degradation. Regular inspection of crucibles for cracks, defects, or signs of wear is important to prevent unexpected failures during the evaporation process. Follow the manufacturer's recommendations for any specific maintenance procedures, such as annealing or surface treatment, to prolong the crucible's lifespan.
View more faqs for this product

4.8

out of

5

Exceptional chemical resistance, perfect for our lab!

Sergei Petrovich

4.7

out of

5

Highly durable, withstands harsh conditions well.

Hiroshi Tanaka

4.9

out of

5

Inert material ensures no contamination, excellent!

Luisa Mendez

4.6

out of

5

Great temperature resistance, versatile for many applications.

Miguel Rodriguez

4.8

out of

5

Machine-finished surfaces make cleaning a breeze.

Anya Kovalenko

4.7

out of

5

Unbreakable, a huge safety and cost saver in the lab.

Erik Nielsen

4.9

out of

5

Lightweight yet robust, ideal for our daily use.

Fatima Al-Mansour

4.8

out of

5

Excellent dielectric properties, crucial for our research.

Yi Zhang

4.6

out of

5

Optically clear, great for observation without interference.

Gianluca Bianchi

PDF - PTFE crucible/with lid

Download

Catalog of Ptfe Material

Download

Catalog of High Purity Graphite Crucible

Download

Catalog of Alumina Crucible

Download

Catalog of Ceramic Crucible

Download

Catalog of Evaporation Crucible

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Alumina (Al2O3) Ceramic Crucible Semicircle Boat  with Lid

Alumina (Al2O3) Ceramic Crucible Semicircle Boat with Lid

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Alumina (Al2O3) Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

PTFE container

PTFE container

PTFE container is a container with excellent corrosion resistance and chemical inertness.

PTFE Beaker/PTFE Beaker lids

PTFE Beaker/PTFE Beaker lids

The PTFE beaker is a laboratory container that is resistant to acid, alkali, high and low temperatures and is suitable for temperatures ranging from -200ºC to +250ºC. This beaker has excellent chemical stability and is widely used for heat treatment samples and volume analysis.

PTFE culture dish/evaporation dish/cell bacteria culture dish/acid and alkali resistant and high temperature resistant

PTFE culture dish/evaporation dish/cell bacteria culture dish/acid and alkali resistant and high temperature resistant

The Polytetrafluoroethylene (PTFE) culture dish evaporating dish is a versatile laboratory tool known for its chemical resistance and high-temperature stability. PTFE, a fluoropolymer, offers exceptional non-stick properties and durability, making it ideal for various applications in research and industry, including filtration, pyrolysis, and membrane technology.

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina (Al2O3) Ceramic Crucible For Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

PTFE cleaning rack

PTFE cleaning rack

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

PTFE centrifuge tube rack

PTFE centrifuge tube rack

The precision-made PTFE test tube racks are completely inert and, due to the high temperature properties of PTFE, these test tube racks can be sterilized (autoclaved) without any problems.

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

PTFE volumetric flask/strong acid and alkali resistant, high temperature resistant, corrosion resistant

The PTFE Volumetric Flask, a robust alternative to glass and PP flasks, excels in measuring both acidic and alkaline liquids. Characterized by its chemical inertness, translucency, and wide volume options, this flask ensures a non-leachable, ultra-clean background. Its non-stick surface simplifies cleaning and maintenance, making it ideal for harsh laboratory conditions.

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

PTFE reagent bottle/wide -mouth bottle/fine mouth bottle/sample bottle/high temperature PTFE

The PTFE Reagent Bottle, also known as PTFE Chemical Bottles or Teflon Reagent Bottle, is a robust alternative to traditional glass reagent bottles. These bottles are highly resistant to both acids and alkalis, featuring a leak-proof screw cap. Ideal for laboratory use, they offer excellent chemical resistance, high temperature capabilities up to 260°C, and superior durability.

Laboratory ITO/FTO conductive glass cleaning flower basket

Laboratory ITO/FTO conductive glass cleaning flower basket

PTFE cleaning racks are mainly made of tetrafluoroethylene. PTFE, known as the "King of Plastics", is a polymer compound made of tetrafluoroethylene.

PTFE recyclers/Magnetic stirring bar recyclers

PTFE recyclers/Magnetic stirring bar recyclers

This product is used for stirrer recovery, and is resistant to high temperature, corrosion, and strong alkali, and is almost insoluble in all solvents. The product has a stainless steel rod inside and a polytetrafluoroethylene sleeve outside.

PTFE insulator connector filter high voltage PTFE

PTFE insulator connector filter high voltage PTFE

PTFE insulator PTFE has excellent electrical insulation properties in a wide temperature and frequency range.

PTFE acid and alkali resistant scoops/chemical powder material scoops

PTFE acid and alkali resistant scoops/chemical powder material scoops

Known for its excellent thermal stability, chemical resistance and electrical insulating properties, PTFE is a versatile thermoplastic material.

PTFE bottle oil fume sampling tube

PTFE bottle oil fume sampling tube

PTFE products are generally called "non-stick coating", which is a synthetic polymer material that replaces all hydrogen atoms in polyethylene with fluorine.

PTFE tweezers

PTFE tweezers

PTFE tweezers inherit the excellent physical and chemical properties of PTFE, such as high temperature resistance, cold resistance, acid and alkali resistance, and corrosion resistance to most organic solvents.

PTFE stirring bar/high temperature resistant/olive type/cylindrical/laboratory rotor/magnetic stirrer

PTFE stirring bar/high temperature resistant/olive type/cylindrical/laboratory rotor/magnetic stirrer

The PTFE stirring bar, made from high-quality polytetrafluoroethylene (PTFE), offers exceptional resistance to acids, alkalis, and organic solvents, coupled with high-temperature stability and low friction. Ideal for laboratory use, these stirring bars are compatible with standard flask ports, ensuring stability and safety during operations.

PTFE flower basket /Cleaning flower basket Corrosion-resistant

PTFE flower basket /Cleaning flower basket Corrosion-resistant

The PTFE cleaning rack, also known as the PTFE flower basket cleaning flower basket, is a specialized laboratory tool designed for the efficient cleaning of PTFE materials. This cleaning rack ensures thorough and safe cleaning of PTFE items, maintaining their integrity and performance in laboratory settings.