Thematics Pellet Dies

pellet dies

Lab pellet dies is a device used in laboratories to press different types of sample materials, including rubbers, polymers, and composites. The sample materials are compressed to prepare them for various tests, such as tensile strength, elongation tests, and Mooney viscosity. Lab press mold is cost-effective and requires minimal material loss during the molding process. It is preferred by scientists and researchers due to its precision and ability to provide reliable and consistent results. Lab press molds are used in several industries and material categories, including pharmaceuticals, laminating, rubber and plastic molding, and R&D tests.


Our extensive range of laboratory platen pellet dies can be used for R&D, quality tests, and short runs in various industries, including pharmaceuticals, laminating, and rubber and plastic molding. Our lab presses are designed for precision, durability, and consistency, providing long-lasting results for your research. 

Applications of Lab Pellet Dies

  • Preparation of samples for R&D and quality tests in various industries, including pharmaceuticals, laminating, rubber and plastic molding.
  • Testing and compacting materials such as rubber, plastics, composites, ceramics, wood, and thermoplastic resins.
  • Laminating and pharmaceutical applications.
  • Short production runs and lean manufacturing applications.
  • Research and educational purposes in universities. 

Advantages of Lab Pellet Dies

  • Consistent and Accurate Pellet Production
  • Customizable Die Shapes
  • Wide Range of Pressure Options
  • Suitable for Various Applications such as Pharmaceutical Development, Spectroscopy, and Bomb Calorimetry
  • Ideal for Creating Compressed Pellets from Powdered Materials
  • Can be Used for Creating Complex Ceramic Parts with High Quality
  • Offers Higher Packing Uniformity than Uniaxial Pressing
  • Easy to Automate with Dry-Bag Isopressing
  • Reduces Maintenance with Longer O-Ring Life
  • Requires Less Bench Space
  • Easy to Move between Labs
  • Easy to Operate
  • Provides Faster Loading and Unloading
  • Suitable for Pressing Irregular Shapes such as Donuts or Shapes with Changing Dimensions Along Its Length
  • Ideal for Pressing Long and Thin Items with High Stability and Uniformity.

Lab Pellet Dies is a crucial tool for preparing samples for R&D and quality tests. Our Lab Press Mold is a highly cost-effective solution that provides a complete customisation service, ensuring that your specific requirements are met. Our extensive product line offers standard solutions that fit your needs, and we also provide custom designs for more unique applications.

FAQ

What Is A Press Mold?

A press mold is a device used in material processing methods such as cold isostatic pressing (CIP) and metal mold pressing to create molded bodies from powder materials. In CIP, the mold containing the powder is immersed in a pressure medium, and isostatic pressure is applied to the outer surfaces of the mold to compress the powder into a shape. Metal mold pressing applies only uniaxial pressure to the powder material to create molded bodies. CIP can produce products with uniform density and homogeneity due to no frictions with a metal mold.

What Is Press Mould In Ceramics?

Press moulding is a ceramic forming technique that involves the compaction of powders by applying either a rigid or flexible pressure. It can be either uniaxial or isostatic, depending on the shape required. Isostatic pressing is used for shapes that cannot be obtained by uniaxial pressing or for added value products that require high density and isotropic green bodies. The molds for axial-pressing are usually made of steel, while those for isostatic pressing are made of elastomers, silicone, and polyurethanes. This technology is applied in various fields like ceramics, MMC, CMC, and Silicon nitride for cutting tools, components of heavy-duty valves, wear parts for process technology, and more.

How Are Pellet Molds Used?

To use a pellet mold, the powdered or granular material is first loaded into the mold cavity. The material is then compacted by applying pressure using a laboratory press or hydraulic machine. The pressure causes the material to conform to the shape of the mold, resulting in a solid pellet or cylindrical sample. After the compaction process, the pellet is removed from the mold and can be further processed or analyzed as needed.

What Types Of Materials Can Be Pelletized Using Pellet Molds?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

How Can One Select The Appropriate Pellet Mold For Their Specific Application?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Invisible Interface: Why Simple Connections Define Complex Chemistry

The Invisible Interface: Why Simple Connections Define Complex Chemistry

In electrochemistry, data integrity relies on the physical interface. Discover why the humble copper tape and gasket seal are the true guardians of your results.

Read more
The Architecture of Transparency: Mastering Safety and Precision in Quartz Electrolysis

The Architecture of Transparency: Mastering Safety and Precision in Quartz Electrolysis

Master the art of using all-quartz electrolytic cells. From preventing micro-bubbles to managing electrical hazards, discover how discipline drives data integrity.

Read more
Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Struggling with inconsistent powder-pressed parts? The real flaw isn't your furnace. Learn how Cold Isostatic Pressing ensures flawless results.

Read more
The Architecture of Precision: Why the Invisible Details Define Electrochemical Success

The Architecture of Precision: Why the Invisible Details Define Electrochemical Success

Master the art of pre-use inspection for electrolytic cells. From physical integrity to electrode purity, learn why the invisible details dictate experimental safety.

Read more
The Invisible Architecture of Precision: Mastery Before the Current Flows

The Invisible Architecture of Precision: Mastery Before the Current Flows

Achieve electrochemical accuracy by mastering the four pillars of preparation: rigorous inspection, cleaning, installation, and electrolyte management.

Read more
The Glass Heart of the Experiment: Precision Through Systematic Care

The Glass Heart of the Experiment: Precision Through Systematic Care

Routine maintenance of double-layer electrolytic cells isn't just cleaning—it's calibration. Discover the systematic protocol for reproducible electrochemical data.

Read more
The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

Tired of cracked sintered parts? The problem isn't your furnace. Learn the real root cause—uneven density—and how Cold Isostatic Pressing fixes it.

Read more
The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

The Thermodynamics of Patience: Preventing Electrolytic Cell Overload

Overloading an electrolytic cell isn't just an error; it's a systemic failure. Learn the physics of safety, the risks of excess energy, and how to maintain control.

Read more
The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

Stop blaming the furnace. Discover the hidden flaw in powder pressing that causes parts to crack and learn how Cold Isostatic Pressing (CIP) offers a permanent fix.

Read more
The Architecture of Precision: Mastering the Five-Port Water Bath Electrolytic Cell

The Architecture of Precision: Mastering the Five-Port Water Bath Electrolytic Cell

Mastering the electrolytic cell is not just about chemistry; it is about discipline. Learn the systematic approach to preparation, operation, and maintenance.

Read more
The Architecture of Control: Mastering the Super-Sealed Electrolytic Cell

The Architecture of Control: Mastering the Super-Sealed Electrolytic Cell

Precision in electrochemistry isn't just about theory; it's about mechanical discipline. Learn the critical protocols for super-sealed electrolytic cells.

Read more
The Architecture of Control: Why Thermal Stability Defines Electrochemical Precision

The Architecture of Control: Why Thermal Stability Defines Electrochemical Precision

Master electrochemical accuracy by understanding the interplay between three-electrode systems and thermal regulation. Eliminate variables to ensure reproducibility.

Read more
The Quiet Architecture of Clarity: Preserving Side-Window Optical Cells

The Quiet Architecture of Clarity: Preserving Side-Window Optical Cells

Learn the precise protocols for storing optical electrolytic cells. Prevent thermal degradation, chemical etching, and data drift with expert maintenance strategies.

Read more
The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

The Silence of the Seal: Why Electrochemical Precision is a Battle Against the Atmosphere

Precision in electrochemistry isn't just about voltage; it's about isolation. Discover how super-sealed cells defeat contamination and define reproducibility.

Read more
Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Discover the hidden reason your hydraulic press gives inconsistent results. Learn why the choice of steel is more critical than tonnage for safety and accuracy.

Read more
The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

The Architecture of Control: Why Thermal Stability Defines Electrolysis Success

Discover how double-layer water-bath electrolytic cells eliminate thermal variables, ensuring accuracy and reproducibility in electrochemical research.

Read more
Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Stop blaming your powder. Discover the real reason your lab pellets fail and how a precision hydraulic press solves inconsistent sample prep for good.

Read more
Why Your Lab's Hydraulic Press Keeps Failing (It’s Not What You Think)

Why Your Lab's Hydraulic Press Keeps Failing (It’s Not What You Think)

Discover the three 'silent killers' of lab hydraulic presses, like off-center loading and fluid contamination, and how to prevent costly failures.

Read more
Why Your Sample Prep Fails: The Hidden Flaw in Your Hydraulic Press

Why Your Sample Prep Fails: The Hidden Flaw in Your Hydraulic Press

Frustrated with cracked pellets and inconsistent lab press results? Discover the hidden material flaw in your equipment and how to fix it for good.

Read more
Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Why Your High-Temperature Furnace Elements Keep Failing (And How to Stop It)

Discover the hidden causes of MoSi2 heating element failure, like pesting and chemical attack, and learn how to achieve reliable, repeatable results.

Read more