Thematics Lab Press

lab press

Hydraulic Lab Press is widely used in material researching labs,pharmacy,catalytic reaction,ceramics, electronic industries, it is one high efficient equipment for the sample preparing, due to its small footprint, it easy to carry and move, can work inside the vacuum glove box for processing under vacuum environment.

12-24T model machine output sample can meet requirement of infrared spectrometer.

24-40T model machine output sample can meet requirement of fluorescence spectrometer.

kbr pellet press 2t

kbr pellet press 2t

Item Number: PCKBR


We have the best Lab Press solutions to meet your laboratory needs. Whether you require standard solutions or bespoke designs, our extensive portfolio ensures we can meet almost any customer requirement. Our laboratory presses are ideal for R&D work, testing, short production runs, and educational purposes. They offer undeniable precision and durability, providing long-lasting and consistent results.

Application

Laboratory Hydraulic press is widely used in:

  • material researching labs
  • pharmacy
  • catalytic reaction
  • ceramics
  • electronic industries
  • spectroscopy

Laboratory Hydraulic press can work inside the vacuum glove box for processing under vacuum environment It is a versatile tool that can be used for a variety of tasks, from pressing samples to measuring pressures.

Advantages of Lab Press

  • Precision and Accuracy: Lab presses are preferred by scientists and researchers because of their precise and accurate results. They meet the rigorous demands of research, testing, and limited production applications.
  • Durability: The durability of lab presses ensures long life in the lab, providing consistent and long-lasting results.
  • Programmable Controls: The design and manufacture of lab presses includes programmable controls, allowing users to press products more accurately, consistently and according to specific requirements.
  • Customizable: Some lab presses can accommodate a wide range of different-sized or customized dies.
  • Wide Range of Applications: Lab presses are used in a variety of industries, including pharmaceutical, laminating, rubber and plastic molding, R&D work, testing, short runs, limited production, cell manufacturing, lean manufacturing, and educational and research purposes in universities.

Some options for Laboratory Hydraulic press

Lab presses usually offer a handful of options with various ranges of temperature, pressure and platen sizes along with customization in order to meet particular processes..

How to choose a lab press

In a laboratory environment, space is often limited, so the press must be designed to fit into the available space. The press must also be designed to be easy to use and easy to clean. The safety of the operator must be taken into account, as well as the safety of the equipment.

Kindle Tech have summarized some of these conditions for you to consider how to choose a laboratory press .

  • Sample shape and size you need
  • How much load or force will you have to put on the sample?
  • Laboratory size requirements
  • How much strength or energy (work) is required to pump the press up to the required load?
  • The power system of the lab press chooses manually , pneumatically, or electrically?
  • Electrical usage and safety
  • Does the laboratory press need to be moved?
  • How much does it cost for the features you require and how much will be added to that cost for optional features?

FAQ

What Is A Lab Press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What Is The Purpose Of A Hydraulic Press In Lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What Are Different Type Of Lab Presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

Defeating the Void: The Quiet Power of Vacuum Hot Pressing

Defeating the Void: The Quiet Power of Vacuum Hot Pressing

Learn how vacuum hot pressing combines heat, pressure, and a controlled atmosphere to eliminate porosity and forge ultra-dense advanced materials.

Read more
The Unseen Physics of Perfection: Mastering Heat, Pressure, and Time

The Unseen Physics of Perfection: Mastering Heat, Pressure, and Time

A deep dive into how hot press machines work, exploring the critical interplay of heat, pressure, and time that defines quality and prevents failure.

Read more
The Thermodynamics of a Perfect Seal: A Component-Level Approach to Sterilization

The Thermodynamics of a Perfect Seal: A Component-Level Approach to Sterilization

Learn why autoclaving your entire electrolytic cell destroys the seal. A guide to understanding material properties and protecting your experiments.

Read more
The Physics of Permanence: How Hot Presses Forge the Modern World

The Physics of Permanence: How Hot Presses Forge the Modern World

Hot presses use controlled heat and pressure to create permanent bonds. Discover how this transformative technology enables everything from electronics to advanced materials.

Read more
The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

Cleaning a furnace tube isn't just maintenance; it's calibration. Learn the diagnostic process for quartz and alumina tubes to prevent contamination.

Read more
Why Your Forge Welds Fail: The Hidden Power of Pressure Over Impact

Why Your Forge Welds Fail: The Hidden Power of Pressure Over Impact

Tired of inconsistent Damascus billets and exhausting forging sessions? Discover the root cause and why a hydraulic press is the fix.

Read more
Why Your Leather Embossing Is Inconsistent—And How to Fix It for Good

Why Your Leather Embossing Is Inconsistent—And How to Fix It for Good

Struggling with faint, blurry, or scorched leather embossing? Discover the scientific reason it fails and how to achieve perfect, repeatable results.

Read more
Beyond Heat: Why Pressure is the Deciding Factor in Advanced Materials

Beyond Heat: Why Pressure is the Deciding Factor in Advanced Materials

Explore the critical trade-offs between hot pressing and sintering. Learn how pressure transforms material properties, costs, and project outcomes.

Read more
The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

Increasing pressure in hot press sintering speeds densification but risks hidden flaws like anisotropy. Mastering this trade-off is key to superior materials.

Read more
Uniformity Over Form: The Hidden Genius of Cold Isostatic Pressing

Uniformity Over Form: The Hidden Genius of Cold Isostatic Pressing

Discover why Cold Isostatic Pressing sacrifices initial shape accuracy to achieve the uniform density critical for flawless, high-integrity final parts.

Read more
Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Discover how hot press lamination forges non-porous, chemical-resistant surfaces, making it the ideal foundation for modern laboratory furniture.

Read more
From Dust to Density: The Microstructural Science of Hot Pressing

From Dust to Density: The Microstructural Science of Hot Pressing

Hot pressing isn't just shaping material; it's a micro-engineering process that eliminates hidden voids to create parts with near-perfect density and strength.

Read more
Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Struggling with inconsistent powder-pressed parts? The real flaw isn't your furnace. Learn how Cold Isostatic Pressing ensures flawless results.

Read more
The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

Tired of cracked sintered parts? The problem isn't your furnace. Learn the real root cause—uneven density—and how Cold Isostatic Pressing fixes it.

Read more
The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

Master the art of electrolytic cell maintenance. Discover how a tiered cleaning protocol prevents contamination and ensures experimental reproducibility.

Read more
The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

The Real Reason Your Sintered Parts Crack (And It’s Not the Furnace)

Stop blaming the furnace. Discover the hidden flaw in powder pressing that causes parts to crack and learn how Cold Isostatic Pressing (CIP) offers a permanent fix.

Read more
The Silent Interface: Mastery Over Electrode Decay

The Silent Interface: Mastery Over Electrode Decay

Electrode failure is rarely sudden; it is the compound interest of neglect. Learn the disciplined maintenance protocols that preserve accuracy and longevity.

Read more
The Architecture of Control: Why Thermal Stability Defines Electrochemical Precision

The Architecture of Control: Why Thermal Stability Defines Electrochemical Precision

Master electrochemical accuracy by understanding the interplay between three-electrode systems and thermal regulation. Eliminate variables to ensure reproducibility.

Read more
Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Discover the hidden reason your hydraulic press gives inconsistent results. Learn why the choice of steel is more critical than tonnage for safety and accuracy.

Read more
Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Stop blaming your powder. Discover the real reason your lab pellets fail and how a precision hydraulic press solves inconsistent sample prep for good.

Read more