Products Sample Preparation Electric Lab Press Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T
Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Electric Lab Press

Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Item Number : PCPE

Price varies based on specs and customizations


Working pressure
0-60 T
Piston diameter
95-150 mm
Piston stroke
30-50 mm
Gauge range
0-40 Mpa
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

Hydraulic press is widely used in material researching labs,pharmacy,catalytic reaction,ceramics, electronic industries, it is one high efficient equipment for the sample preparing, due to its small footprint, it easy to carry and move, can work inside the vacuum glove box for processing under vacuum environment. Hydraulic press can also process hot press function with heating plates, which can serve the particular material processing

Applications of manual Hydraulic Press

Feature

  1. Small footprint, light weight, easy to carry and move, nice fitting vacuum glove box
  2. Both electric driving and manual press are available, high precision digital pressure gauge  
  3. Pressure can be programmed, hydraulic will restart working when pressure drops to set value
  4. 12-24T model machine output sample can meet requirement of infrared spectrometer
  5. 24-40T model machine output sample can meet requirement of fluorescence spectrometer

Detail & Parts

30T Electric Hydraulic Press
30T Electric Hydraulic Press
40T Electric Hydraulic Press
40T Electric Hydraulic Press
60 TElectric Hydraulic Press
60T Electric Hydraulic Press
  • Flexible: The tablet press has two modes: manual pressurization and electric pressurization. The operation is more flexible, and the manual pressurization pressure can be controlled more accurately.
  • Control: When the pressure is lower than the pressure control line, the equipment will automatically turn on to compensate for pressure, which can achieve a long-term automatic pressure maintaining function.
  • Accuracy: The electric tablet press uses a digital pressure controller, and the digital display of pressure is more accurate than the pressure display of the pointer pressure gauge.

Advantages

  1. The upper plate adopts electroplated countersunk head hexagonal screws, beautiful and space-saving
  2. Chrome-plated cylinder, smooth surface, no rust, good sealing rubber ring, no oil leakage
  3. One-piece main board structure, oil pool, main board, oil cylinder in a body, no seal connection
  4. Extended pulling spring, good rebound effect, not easy to deformation, can achieve the cylinder 30mm return without deformation
  5. All aluminum alloy hand wheel, beautiful, practical, not easy to break
  6. Small size, light weight, no oil leakage, can be used in the glove box
  7. Mold using Japanese high-speed steel, good material, high hardness, no deformation, long service life
  8. Digital display pressure gauge, more accurate pressure control, pressure display accuracy of 0.01MPa
  9. Oil pool outside the host, easy to replace the oil, and the oil circuit increased the hydraulic oil filtration device
  10. Special plunger, using special custom sealing structure, excellent sealing effect
  11. Pressurizing device, placed in the lowermost corner of the mainframe, the angle is reasonable, pressurizing force does not tilt back

Technical specifications

Instrument model PCPE-20T PCPE-30T PCPE-40T PCPE-60T
Pressure range 0-20T(0-28MPa) 0-30T(0-31.5MPa) 0-40T(0-30MPa) 0-60T(0-33MPa)
Piston diameter Φ95mm (d) Φ110mm (d) Φ130mm (d) Φ150mm (d)
Integral structure No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced
Pressure gauge Digital display 0.00-40.00 MPa Digital display 0.00-40.00 MPa Digital display 0.00-40.00 MPa Digital display 0.00-40.00 MPa
Maximum pressure (T) 30mm  40mm 50mm 50mm 
Pressure stability ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min
Pressurization mode Electric / manual Electric / manual Electric / manual Electric / manual
Compensation mode Auto/ manual Auto/ manual Auto/ manual Auto/ manual
Workbench diameter Φ105mm (D) Φ120mm (D) Φ140mm(D) Φ160mm (D)
Number of columns Four Four Four Four
Working space 80×150mm(M×N) 92×160mm(M×N) 115×185mm(M×N) 185×250mm(M×N)
Dimensions 245×415×415mm(L×W×H) 275×430×420mm(L×W×H) 295×450×500mm(L×W×H) 405×470×565mm(L×W×H)
Power supply 220V(50Hz/60Hz) 220V(50Hz/60Hz) 220V(50Hz/60Hz) 220V(50Hz/60Hz)
Weight 58Kg 72Kg 92Kg 140Kg
Diagram of hydraulic powder press size
Diagram of hydraulic powder press size
Force Pressure
1 [Tons] 1.41 [MPa]
2 [Tons] 2.82 [MPa]
3 [Tons] 4.23 [MPa]
5 [Tons] 7.06 [MPa]
8 [Tons] 11.3 [MPa]
10 [Tons] 14.1 [MPa]
12 [Tons] 17    [MPa]
15 [Tons] 22.6 [MPa]
20 [Tons] 28    [MPa]
Note: The system pressure intensity shouldn't exceed 35 MPa, or else it will shorten the service life of the equipment.
igital pressure gauge
igital pressure gauge

Operating steps

​How to replace accessories and precautions

Please click the link

Before we get started, please make sure you have read the manufacturer's instructions carefully and are familiar with the basic components of the machine. Once you are comfortable with the machine, follow these steps to operate it:

Operating step 1

1.Press the MODE button, set 0001 and press the MODE button again to enter the control menu.

Operating step 2

2.Press the MODE button to enter the settings menu whenRL1H appears on the screen, and enter the pressure value below.

Operating step 3

3.Select RL1H and press the MODE button,and enter the pressure value above which the hydraulic press stops pressurization.

Operating step 4

4.After setting the pressure, put the die in the hydraulic press and tighten the screw rod to compress the die.

Operating step 5

5.Tighten the oil drain valve rod to prepare for pressurizing.

Operating step 6

6. Press the green START button and the hydra-ulic press starts pressurizing; after reaching the set pressure, the system stops.

Operating step 7

7. To control the pressure accurately,control the sheet to desired pressure with the hand pressurizing device on the right.

Operating step 8

8. Adjust the overflow valve in the case clockwise to increase the overshoot value and adjust counterclockwise to decrease the value.

Operating step 9

9. Press the green START button, turn off the power of the hydraulic press , and release the oil drain valve rod to release the pressure to 0.

Operating step 10

10.Release the screw rod and take out the die.

Full range of lab press types

Full range of lab press types

Click to view our full range of lab press products.

Any question? Our experts have helped many laboratories choose their lab press, contact us now!

Full range of types of laboratory press molds

We have a full range of molds for you to choose from, and the molds fit the body perfectly.

If you need molds with special shapes, we can also customize them for you.

laboratory press mold

Click to see all press molds.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What are laboratory hydraulic machines?

Laboratory hydraulic machines are precision instruments used in scientific and industrial settings for applying controlled force and pressure to samples or materials. These machines utilize hydraulic systems to generate the force required for various applications, such as compression testing, material characterization, and sample preparation.

What is a lab press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What are the advantages of using laboratory hydraulic machines?

Laboratory hydraulic machines offer several advantages in terms of their force capacity, precision, and versatility. They can generate high forces, making them suitable for testing or processing materials that require significant pressure. Hydraulic machines provide precise control over the applied force, allowing for accurate and repeatable results. They are often equipped with load cells or sensors to measure and monitor the force or displacement during testing. Hydraulic machines can accommodate a wide range of sample sizes and shapes, making them versatile for various applications. Additionally, they can operate at different speeds, providing flexibility for different testing or processing requirements.

How do electric laboratory presses work?

Electric laboratory presses typically consist of a motor-driven ram or piston that applies force to a sample through a platen or die. The electric motor is controlled by a control panel, allowing the user to set and adjust the desired force and speed. The sample is placed between the platens, and as the motor drives the ram, the force is applied, exerting pressure on the sample. This controlled pressure enables various processes such as compression testing, powder compaction, sample preparation, and material synthesis.

What is the purpose of a hydraulic press in lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What are the applications of pellet presses?

Pellet presses have a wide range of applications across various industries. They are commonly used in the pharmaceutical industry to produce uniform and compacted pellets for drug formulations. In the food industry, pellet presses are used to create animal feed pellets, as well as pellets for snacks and breakfast cereals. Pellet presses are also used in the chemical industry for catalysts, fertilizers, and chemical additives. Additionally, they find application in the biomass industry for the production of wood pellets for fuel, as well as in the metallurgical industry for the production of metal pellets for further processing.

What are the applications of laboratory hydraulic machines?

Laboratory hydraulic machines find applications in diverse fields, including materials science, engineering, geotechnical testing, and quality control. They are commonly used for compression testing of materials, including metals, polymers, ceramics, and composites. Hydraulic machines are employed in tensile testing, bending tests, and fatigue testing, allowing for the characterization of material properties. These machines are also used in geotechnical testing to assess the strength and stability of soils or rock samples. Additionally, hydraulic machines can be utilized for sample preparation, such as pelletizing or briquetting powdered materials.

What are the advantages of using electric laboratory presses?

Electric laboratory presses offer several advantages over manual or hydraulic presses. The electric motor provides precise control over the applied force, allowing for accurate and repeatable results. They offer adjustable speed and force settings, making them versatile for different applications and materials. Electric presses are generally quieter, cleaner, and more energy-efficient compared to hydraulic systems. Additionally, they eliminate the need for hydraulic fluid and associated maintenance. Electric presses also have a smaller footprint, making them suitable for laboratory environments with limited space.

What are different type of lab presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

How do you prepare pressed pellets for XRF?

Pressed pellets for XRF analysis are prepared by grinding the sample to a fine particle size and mixing it with a binder or grinding aid. The mixture is then poured into a pressing die and compressed at a pressure of between 15 and 35T. The resulting pellet is ready for analysis. It is important to consider the particle size of the sample, choice of binder, sample dilution ratio, pressure used for pressing, and the thickness of the pellet when designing a sample preparation recipe. Consistency in the preparation procedure is key to ensuring accurate and repeatable results.

What is KBr used for?

KBr, or potassium bromide, is commonly used in laboratories as a matrix for infrared spectroscopy. It is mixed with an organic sample and compressed into a pellet using a press like the benchtop KBr Pellet Press. The resulting pellets are used for analysis of the sample's molecular structure and composition. KBr is also used for briquetting inorganic samples for x-ray fluorescence spectroscopy and for pressing thin polymer films using heated platens for transmission sampling by IR spectroscopy. It is an important tool for researchers in the fields of pharmaceuticals, biology, nutrition and spectroscopy.

How does a pellet press work?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What are the main components of a laboratory hydraulic machine?

The main components of a laboratory hydraulic machine include a hydraulic pump, a hydraulic cylinder, a piston, valves, gauges, and a control panel. The hydraulic pump generates pressure by forcing hydraulic fluid into the cylinder. The hydraulic cylinder houses the piston, which applies force to the sample or material. Valves control the flow of hydraulic fluid, allowing for precise control over the applied force. Gauges measure and display the force or pressure being applied. The control panel or software enables users to set and adjust parameters such as force, displacement, or strain.

What are the applications of electric laboratory presses?

Electric laboratory presses find applications in a wide range of scientific and industrial settings. They are commonly used for compression testing of materials, including polymers, metals, ceramics, and composites. These presses are also employed in powder compaction processes, such as tabletting in pharmaceutical manufacturing or the preparation of powdered samples for analysis. Electric presses are used for material synthesis, such as the formation of thin films or the fabrication of electrodes. Additionally, they are utilized in research and development for sample preparation, sample extrusion, and various other processes that require precise application of force and pressure.

What pressure should XRF pellets be?

XRF pellets should be pressed at pressures between 15 and 40 tons for 1-2 minutes to ensure that the binder recrystallizes and that there are no void spaces present in the pellet. The pressure applied by the hydraulic press should be enough for the sample to be completely compressed. The thickness of the pellet is also crucial, as it must be infinitely thick to the X-rays. Working with small particle sizes (<50µm or <75µm) is also important for effective analysis. These factors impact how well the sample binds together under pressure, which affects the analytical results.

What is the KBr pellet method?

The KBr pellet method is a technique used in spectroscopy to analyze solids. It involves compressing powdered materials into pellet form using a compact, hand-operated press called the KBr Pellet Press. The resulting pellets are cylindrical in shape and can be of any desired thickness. This method is particularly useful in pharmaceutical, biological, nutrition, and spectrographic operations, and provides advantages such as using less sample than ATR, higher signal-to-noise, and control over signal intensity by changing sample concentration or increasing pathlength. It also offers clear advantages in detecting trace contaminants.

What are the benefits of using a pellet press?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What considerations should be taken when selecting a laboratory hydraulic machine?

When selecting a laboratory hydraulic machine, several factors should be considered. The force capacity should match the specific application and the maximum force expected. The size and configuration of the hydraulic cylinder should accommodate the sample size and shape. The machine should have precise control over the applied force, displacement, or strain, with user-friendly software or control panels. Safety features, such as emergency stop buttons and protective shields, should be evaluated. It is important to ensure that the machine is constructed from durable materials and designed for long-term use. Additionally, it is crucial to consider the availability of accessories or fixtures to hold the samples securely during testing.

What considerations should be taken when selecting an electric laboratory press?

Several factors should be considered when selecting an electric laboratory press. The required force capacity should match the specific application and the maximum force expected. The platen size should accommodate the sample size and shape. The speed range and control options should align with the desired testing or processing requirements. It is important to ensure the press is constructed from durable materials and designed for long-term use. Safety features, such as emergency stop buttons and protective shields, should be evaluated. Additionally, the availability of accessories, such as different platens or heating options, can be crucial for specific applications.

What is the advantage of XRF pressed pellet technique?

The advantage of XRF pressed pellet technique is that it produces high-quality results with a higher signal-to-noise ratio, allowing for the detection of even the lightest elements. Quantifying the elemental composition without pressed pellets can lead to significant discrepancies between expected and actual values. The grinding of the sample into fine particles and compressing it into a smooth and flat XRF pellet reduces background scattering and improves the detection of emissions. Pressed pellets are also relatively quick, low-cost, and lend themselves to simple and cost-effective automation for higher throughput laboratories.

Why KBr is used for pellet?

KBr (potassium bromide) is used for pellet preparation because it is a stable, transparent, and inexpensive salt that is easy to obtain in high purity. When a sample is mixed with KBr powder and compressed into a pellet using a press, it forms a flat, uniform disc with a consistent thickness. KBr pellets are commonly used in spectroscopy applications to analyze solid samples because they provide a clear and reproducible path for infrared light to pass through, which allows for accurate measurements of the sample's chemical composition.

What factors should be considered when selecting a pellet press?

Several factors should be considered when selecting a pellet press. These include the desired pellet size and shape, the material properties, the required production capacity, and the available space and resources. The type and condition of the material being processed, such as its moisture content, particle size, and flowability, can also influence the selection of the pellet press. Additionally, factors such as the power requirements, ease of operation and maintenance, and the availability of spare parts and technical support should be considered. It is important to choose a pellet press that aligns with the specific requirements and objectives of the application to ensure optimal performance and cost-effectiveness.

How to make KBr pellets for FTIR?

To make KBr pellets for FTIR, a pellet press die set, pestle and mortar, and IR-transparent medium, such as KBr, are required. The KBr and sample are mixed in a mortar, and the resulting mixture is pressed into a disc using a die set and a hydraulic press. The pellet should be thin, transparent, and contain only a small amount of the sample. The typical ratio of KBr to sample is 100:1. KBr is hygroscopic, so it should be stored in a dry environment and prepared in a glovebox or with a vacuum die to avoid moisture absorption.
View more faqs for this product

4.9

out of

5

As a lab manager, I can attest to the accuracy and consistency of this press. It has significantly improved our workflow.

Nolberto Arredondo

4.7

out of

5

The automated features of this press have freed up our technicians to focus on other tasks, leading to increased productivity.

Aishah Abdullah

4.8

out of

5

The integrated pellet dies and swift operations make this press an excellent choice for high-throughput sample preparation.

Carlota Soto

4.6

out of

5

The ease of use and minimal lab space required make this press a valuable asset to our laboratory.

Maximilien Dubois

4.7

out of

5

The ability to produce firm pellets from various powdered materials without adding a binder is a significant advantage.

Priya Patel

4.9

out of

5

The high-throughput production of pellets for XRF analysis makes this press an essential tool for our laboratory.

Liam Murphy

4.8

out of

5

The small footprint, light weight, and easy portability of this press make it ideal for use in our mobile laboratory.

Isabella Garcia

4.7

out of

5

The accuracy of the digital pressure controller and the long-term automatic pressure maintaining function ensure consistent and reliable results.

Oliver Chen

4.9

out of

5

The extended pulling spring and chrome-plated cylinder ensure smooth operation and minimal maintenance.

Aaliyah Mohammed

4.6

out of

5

The ability to pressurize manually or electrically provides flexibility and control during the pressing process.

Lucas Meyer

PDF of PCPE

Download

Catalog of Electric Lab Press

Download

Catalog of Lab Hydraulic Press

Download

Catalog of Electric Lab Press

Download

Catalog of Lab Press

Download

Catalog of Xrf Pellet Press

Download

Catalog of Kbr Pellet Press

Download

Catalog of Pellet Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Efficient sample preparation with small footprint Manual Lab Hydraulic Press. Ideal for material researching labs, pharmacy, catalytic reaction, and ceramics.

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

Get precise XRF samples with our plastic ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for perfect molding every time.

lab pellet press for vacuum box

lab pellet press for vacuum box

Enhance your lab's precision with our lab press for vacuum box. Press pills and powders with ease and precision in a vacuum environment, reducing oxidation and improving consistency. Compact and easy to use with a digital pressure gauge.

kbr pellet press 2T

kbr pellet press 2T

Introducing the KINTEK KBR Press - a handheld laboratory hydraulic press designed for entry-level users.

XRF & KBR steel ring lab Powder Pellet Pressing Mold

XRF & KBR steel ring lab Powder Pellet Pressing Mold

Produce perfect XRF samples with our steel ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for accurate molding every time.

Manual Lab Pellet Press For Vacuum Box

Manual Lab Pellet Press For Vacuum Box

The lab press for vacuum box is a specialized piece of equipment designed for laboratory use. Its main purpose is to press pills and powders according to specific requirements.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Automatic Lab Cold Isostatic Press (CIP) 20T / 40T / 60T / 100T

Automatic Lab Cold Isostatic Press (CIP) 20T / 40T / 60T / 100T

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Manual Lab Heat Press

Manual Lab Heat Press

Manual hydraulic presses are mainly used in laboratories for various applications such as forging, molding, stamping, riveting and other operations. It allows the creation of complex shapes while saving material.

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Efficient Manure Lab Hydraulic Press with Safety Cover for sample preparation in material research, pharmacy, and electronic industries. Available in 15T to 60T.

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Electric Split Lab cold Isostatic Press (CIP) 65T / 100T / 150T / 200T

Split cold isostatic presses are capable of providing higher pressures, making them suitable for testing applications that require high pressure levels.

Lab pellet press machine for glove box

Lab pellet press machine for glove box

Controlled environment lab press machine for glove box. Specialized equipment for material pressing and shaping with high precision digital pressure gauge.

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Efficiently prepare samples with a split electric lab press - available in various sizes and ideal for material research, pharmacy, and ceramics. Enjoy greater versatility and higher pressure with this portable and programmable option.

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Automatic Lab Hot Isostatic Press (HIP) 20T / 40T / 60T

Automatic Lab Hot Isostatic Press (HIP) 20T / 40T / 60T

Hot Isostatic Pressing (HIP) is a material processing method that simultaneously subjects materials to high temperatures (ranging from hundreds to 2000°C) and isostatic pressures (tens to 200 MPa).

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

XRF Boric Acid lab Powder Pellet Pressing Mold

XRF Boric Acid lab Powder Pellet Pressing Mold

Get accurate results with our XRF Boric Acid lab Powder Pellet Pressing Mold. Perfect for preparing samples for X-ray fluorescence spectrometry. Custom sizes available.

Single Punch Electric Tablet Press Laboratory Powder Tablet Machine

Single Punch Electric Tablet Press Laboratory Powder Tablet Machine

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure is a device that uses pressure saturated steam to quickly and effectively sterilize items.

Related Articles

A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

XRF (X-ray fluorescence) analysis is a powerful technique used in various industries for material analysis. One crucial step in the XRF analysis process is the preparation of high-quality XRF pellets. These pellets serve as the sample for analysis and need to be properly pressed to ensure accurate results.

Find out more
Operating of Automatic Lab xrf Pellet Press

Operating of Automatic Lab xrf Pellet Press

How to use the Automatic Lab xrf Pellet Press, including steel ring, plastic ring, boric acid mold

Find out more
Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

The manual hydraulic pellet press offers several key features that make it a valuable tool for laboratory applications. Some of the main features include:Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Designed pressure force display in 10 kN steps;Ease of operation via hand lever;Convenience in cleaning;Single-stage piston stroke of maximum 25mm ect.

Find out more
Automated laboratory XRF and KBR pellet press operating procedures

Automated laboratory XRF and KBR pellet press operating procedures

Introduction to automated laboratory XRF and KBR pellet press operating procedures.

Find out more
Understanding Hydraulic Pellet Press: Working Mechanism and Applications

Understanding Hydraulic Pellet Press: Working Mechanism and Applications

A hydraulic press, also known as a Bramah press, is a machine that uses fluid pressure to generate a force. This force can be used to compress or mold materials. Hydraulic presses are commonly used in manufacturing and industrial applications due to their ability to exert a large amount of force while still being easy to operate.

Find out more
Comprehensive Guide to Manual Hydraulic Pellet Press

Comprehensive Guide to Manual Hydraulic Pellet Press

A manual hydraulic pellet press is a valuable tool in the laboratory for preparing pellets with a smooth and homogeneous surface for spectral analyses. It is commonly used in applications such as X-ray fluorescence analysis or infrared spectroscopy for elemental analysis.

Find out more
The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The benchtop KBr pellet press is a versatile and efficient tool that produces uniform pellets, ensuring consistent and reliable results. In addition, its adjustable mold can be used flexibly to accommodate a variety of sample sizes and shapes.

Find out more
Guide for Xrf Pellet Press

Guide for Xrf Pellet Press

An XRF tablet press is a machine used to prepare samples for X-ray fluorescence (XRF) analysis by pressing them into a uniform tablet or pellet form.

Find out more
Automatic Hydraulic Press: The Ultimate Guide for Efficient Sample Preparation and Industrial Processes

Automatic Hydraulic Press: The Ultimate Guide for Efficient Sample Preparation and Industrial Processes

Discover the world of automatic hydraulic presses, from their versatile applications in industrial XRF and laboratory sample manipulation to their role in large-scale manufacturing, hot embossing, laminating, and polymer melting. Learn about their benefits, features, and how they revolutionize sample preparation and industrial processes.

Find out more
Understanding the Functioning and Applications of a Hydraulic Pellet Press

Understanding the Functioning and Applications of a Hydraulic Pellet Press

A hydraulic press is a compression device that makes use of an exerted force placed upon a fluid, to create a resulting force according to Pascal’s Law. It was actually invented by Joseph Bramah, so is also known as the Bramah Press.

Find out more
An In-Depth Guide on Laboratory Presses and KBr Pellets Production

An In-Depth Guide on Laboratory Presses and KBr Pellets Production

In the world of scientific research and analysis, laboratory presses and KBr pellet production play a crucial role. These tools are essential in the preparation of samples for various analytical techniques, such as infrared spectroscopy and XRF spectroscopy.

Find out more
Choosing the Right Lab Press: A Comprehensive Guide

Choosing the Right Lab Press: A Comprehensive Guide

When choosing a lab press, it is important to consider the load or force that will be applied to the sample. This will ensure that the press is capable of providing the necessary pressure for your specific application.

Find out more