Products Sample Preparation Manual Lab Press kbr pellet press 2T
kbr pellet press 2T

Manual Lab Press

kbr pellet press 2T

Item Number : PCKBR

Price varies based on specs and customizations


Working pressure
0-2 T
Piston diameter
28 mm
Piston stroke
5 mm
Weight
4.8 kg
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introducing

Introducing the KINTEK KBR Press - a handheld laboratory hydraulic press designed for entry-level users. Its primary function is to prepare high-quality KBr pellets essential for transmission FTIR analysis, utilizing pressure of up to 2 tons. The press is available for purchase either on its own or as part of a complete kit. Engineered with durability in mind, this compact hydraulic press is built to withstand regular use in the laboratory, offering maintenance-free operation. Additionally, its portability enhances its versatility, making it an ideal choice for those on the move.

Advantages

  • The upper plate adopts electroplated countersunk head hexagonal screws, beautiful and space-saving
  • Chrome-plated cylinder, smooth surface, no rust, good sealing rubber ring, no oil leakage
  • One-piece main board structure, oil pool, main board, oil cylinder in a body, no seal connection
  • All aluminum alloy hand wheel, beautiful, practical, not easy to break
  • Small size, light weight, no oil leakage, can be used in the glove box
  • Mold using Japanese high-speed steel, good material, high hardness, no deformation, long service life
  • Digital display pressure gauge, more accurate pressure control, pressure display accuracy of 0.01MPa
  • Oil pool outside the host, easy to replace the oil, and the oil circuit increased the hydraulic oil filtration device
  • Special plunger, using special custom sealing structure, excellent sealing effect

Technical specifications

Model PCKBR-2T
Working pressure(T) 0-2(30Mpa)
Piston diameter ≤1MPa/10min
Workbench diameter Φ45mm(D)
Number of columns Two
Working space 54×55 (M×N)
Dimensions 100×220×220(W×L×H)
Weight(kg) 4.8kg
Diagram of hydraulic powder press size
  • Volume: The tablet press is small in size, light in weight, does not leak oil, and is easy to carry and can be used in the glove box.
  • Structure: Simple structure, no one-way valve, more stable upper pressure, suitable for use with infrared spectrometers.
  • Operation: The operation is simple. Tighten it by hand to apply pressure, and loosen it to release pressure.

Operation

Please click the link for detailed steps

Before we dive into the step-by-step instructions, it's essential to note that safety is of utmost importance when operating the Manual lab press machine. Always wear protective gloves and eye goggles when handling the machine, and make sure to read the user manual carefully before use.

Preparation and Assembly

Preparation and Assembly: Begin by assembling the KBR mold according to the guidelines. Ensure that the samples to be pressed are properly positioned within the mold.

Insertion and Fixation

Insertion and Fixation: Gently place the assembled KBR mold into the designated area within the KBR press. With care, tighten the screws provided to secure the mold in place.

Adjustment and Pressurization

Adjustment and Pressurization: Turn the handle in a clockwise direction to apply pressure to the mold. Gradually increase the pressure to the desired level for your specific requirements. It's recommended to do this in a controlled and steady manner.

Maintain Pressure

Maintain Pressure: Once the desired pressure is achieved, maintain this pressure consistently for the designated duration. The duration may vary depending on the nature of your samples and the desired outcome.

Release and Extraction

Release and Extraction: When the pressing duration is completed, carefully release the pressure by turning the handle counterclockwise. Ensure that the release is gradual to prevent any sudden shifts that might damage the samples or the press.

Disassembly and Sample Retrieval

Disassembly and Sample Retrieval: Gently disassemble the KBR mold, taking care not to disturb the pressed samples. Retrieve the pressed samples with meticulous attention to detail, preserving their integrity for subsequent analyses or studies.

Full range of lab press types

Full range of lab press types

Click to view our full range of lab press products.

Any question? Our experts have helped many laboratories choose their lab press, contact us now!

Full range of types of laboratory press molds

We have a full range of molds for you to choose from, and the molds fit the body perfectly.

If you need molds with special shapes, we can also customize them for you.

laboratory press mold

Click to see all press molds.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Are The Advantages Of Using A Manual Press?

Manual presses offer several advantages in industrial and workshop settings. They are simple to operate, requiring minimal training or expertise. The manual operation allows for precise control over the applied force, making them suitable for delicate or precise tasks. Manual presses are often more cost-effective compared to automated or hydraulic presses, making them a popular choice for small-scale operations or workshops with limited budgets. They are portable and do not require a power source, allowing for flexibility in their usage. Manual presses are also known for their durability and reliability, requiring minimal maintenance and having a long lifespan.

How Does A Manual Press Work?

A manual press works by utilizing manual force to apply pressure or force on a workpiece. The press typically consists of a frame, a lever or handle, and a mechanism for transmitting and amplifying the force. When the lever or handle is actuated, it moves a ram or plunger that applies pressure to the workpiece. The press may feature adjustable stops or gauges to control the depth or force of the applied pressure. The size and configuration of the press determine the maximum force that can be applied. Manual presses often use mechanical advantage, such as a leverage system, to multiply the force exerted by the operator. The force is transmitted to the workpiece, allowing for various operations like pressing, bending, punching, or riveting.

What Types Of Tasks Can Be Performed Using A Manual Press?

Manual presses are versatile tools that can perform a variety of tasks. They are commonly used for pressing operations, such as assembling parts, forming or bending metal, or compressing materials. Manual presses can also be used for punching or riveting tasks, where holes need to be created or metal components need to be joined together. Additionally, manual presses are employed in tasks like embossing, stamping, or crimping, where pressure is applied to create specific shapes or patterns. The wide range of available dies, molds, or attachments allows for customization and adaptability to different applications.

What Are Laboratory Hydraulic Machines?

Laboratory hydraulic machines are precision instruments used in scientific and industrial settings for applying controlled force and pressure to samples or materials. These machines utilize hydraulic systems to generate the force required for various applications, such as compression testing, material characterization, and sample preparation.

What Is A Lab Press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What Are The Advantages Of Using Laboratory Hydraulic Machines?

Laboratory hydraulic machines offer several advantages in terms of their force capacity, precision, and versatility. They can generate high forces, making them suitable for testing or processing materials that require significant pressure. Hydraulic machines provide precise control over the applied force, allowing for accurate and repeatable results. They are often equipped with load cells or sensors to measure and monitor the force or displacement during testing. Hydraulic machines can accommodate a wide range of sample sizes and shapes, making them versatile for various applications. Additionally, they can operate at different speeds, providing flexibility for different testing or processing requirements.

What Are The Applications Of Pellet Presses?

Pellet presses have a wide range of applications across various industries. They are commonly used in the pharmaceutical industry to produce uniform and compacted pellets for drug formulations. In the food industry, pellet presses are used to create animal feed pellets, as well as pellets for snacks and breakfast cereals. Pellet presses are also used in the chemical industry for catalysts, fertilizers, and chemical additives. Additionally, they find application in the biomass industry for the production of wood pellets for fuel, as well as in the metallurgical industry for the production of metal pellets for further processing.

What Is The Purpose Of A Hydraulic Press In Lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What Is Cold Isostatic Pressing (CIP)?

Cold Isostatic Pressing (CIP) is a process used to compact and mold powders and other materials into a desired shape by applying hydrostatic pressure at room temperature. The process is performed using a flexible mold, typically made of rubber or plastic, that is filled with a liquid pressure medium such as water, oil, or a specialized fluid.

What Is KBr Used For?

KBr, or potassium bromide, is commonly used in laboratories as a matrix for infrared spectroscopy. It is mixed with an organic sample and compressed into a pellet using a press like the benchtop KBr Pellet Press. The resulting pellets are used for analysis of the sample's molecular structure and composition. KBr is also used for briquetting inorganic samples for x-ray fluorescence spectroscopy and for pressing thin polymer films using heated platens for transmission sampling by IR spectroscopy. It is an important tool for researchers in the fields of pharmaceuticals, biology, nutrition and spectroscopy.

How Do You Prepare Pressed Pellets For XRF?

Pressed pellets for XRF analysis are prepared by grinding the sample to a fine particle size and mixing it with a binder or grinding aid. The mixture is then poured into a pressing die and compressed at a pressure of between 15 and 35T. The resulting pellet is ready for analysis. It is important to consider the particle size of the sample, choice of binder, sample dilution ratio, pressure used for pressing, and the thickness of the pellet when designing a sample preparation recipe. Consistency in the preparation procedure is key to ensuring accurate and repeatable results.

What Are The Applications Of Laboratory Hydraulic Machines?

Laboratory hydraulic machines find applications in diverse fields, including materials science, engineering, geotechnical testing, and quality control. They are commonly used for compression testing of materials, including metals, polymers, ceramics, and composites. Hydraulic machines are employed in tensile testing, bending tests, and fatigue testing, allowing for the characterization of material properties. These machines are also used in geotechnical testing to assess the strength and stability of soils or rock samples. Additionally, hydraulic machines can be utilized for sample preparation, such as pelletizing or briquetting powdered materials.

How Does A Pellet Press Work?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What Are Different Type Of Lab Presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

What Is The KBr Pellet Method?

The KBr pellet method is a technique used in spectroscopy to analyze solids. It involves compressing powdered materials into pellet form using a compact, hand-operated press called the KBr Pellet Press. The resulting pellets are cylindrical in shape and can be of any desired thickness. This method is particularly useful in pharmaceutical, biological, nutrition, and spectrographic operations, and provides advantages such as using less sample than ATR, higher signal-to-noise, and control over signal intensity by changing sample concentration or increasing pathlength. It also offers clear advantages in detecting trace contaminants.

What Is Manually Operated Lab Press?

A manually operated lab press, also known as a manual hydraulic press, is a type of laboratory equipment that uses hydraulic pressure to compress or compact a sample. It typically consists of a cylinder filled with hydraulic oil that supplies pressure to a moving piston, which is operated using a hand-operated pump. Manual presses are often used in laboratories to prepare samples for analysis, such as KBr pellets for FTIR spectroscopy or general sample pellets for XRF. They are available in different sizes and capacities and are often cheaper than their automatic counterparts.

What Pressure Should XRF Pellets Be?

XRF pellets should be pressed at pressures between 15 and 40 tons for 1-2 minutes to ensure that the binder recrystallizes and that there are no void spaces present in the pellet. The pressure applied by the hydraulic press should be enough for the sample to be completely compressed. The thickness of the pellet is also crucial, as it must be infinitely thick to the X-rays. Working with small particle sizes (<50µm or <75µm) is also important for effective analysis. These factors impact how well the sample binds together under pressure, which affects the analytical results.

What Are The Main Components Of A Laboratory Hydraulic Machine?

The main components of a laboratory hydraulic machine include a hydraulic pump, a hydraulic cylinder, a piston, valves, gauges, and a control panel. The hydraulic pump generates pressure by forcing hydraulic fluid into the cylinder. The hydraulic cylinder houses the piston, which applies force to the sample or material. Valves control the flow of hydraulic fluid, allowing for precise control over the applied force. Gauges measure and display the force or pressure being applied. The control panel or software enables users to set and adjust parameters such as force, displacement, or strain.

What Are The Benefits Of Using A Pellet Press?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What Are The Advantages Of Cold Isostatic Pressing?

  • High green strength: Machining of the compacted material in its green state becomes more feasible.
  • Materials that are hard to press: Isostatic pressing can be performed on powders without the need for water, lubricants, or binders, making it applicable to a wider range of materials.
  • Predictable shrinkage during sintering is achieved due to the high compaction and uniform density.
  • Time and cost savings in post-processing are possible due to the ability to create large, complex, and near-net shapes.
  • Large aspect ratio parts with uniform density can be produced, resulting in improved quality.
  • Green strength enables efficient in-process handling and treatment, reducing production costs.

What Is A Cold Isostatic Press?

A cold isostatic press (CIP) is a machine used to compact and mold powders and other materials into a desired shape.

The process works by filling a flexible mold, usually made of rubber or plastic, with a liquid pressure medium like water, oil, or a specialized fluid. This mold is then placed in a closed container, and equal pressure is applied to each surface to achieve a high-pressure environment.

The pressure results in an increase in the product's density and allows it to take on the desired shape.

Cold isostatic pressing is performed at room temperature, in contrast to hot isostatic pressing which is carried out at higher temperatures.

Why KBr Is Used For Pellet?

KBr (potassium bromide) is used for pellet preparation because it is a stable, transparent, and inexpensive salt that is easy to obtain in high purity. When a sample is mixed with KBr powder and compressed into a pellet using a press, it forms a flat, uniform disc with a consistent thickness. KBr pellets are commonly used in spectroscopy applications to analyze solid samples because they provide a clear and reproducible path for infrared light to pass through, which allows for accurate measurements of the sample's chemical composition.

What Is The Advantage Of XRF Pressed Pellet Technique?

The advantage of XRF pressed pellet technique is that it produces high-quality results with a higher signal-to-noise ratio, allowing for the detection of even the lightest elements. Quantifying the elemental composition without pressed pellets can lead to significant discrepancies between expected and actual values. The grinding of the sample into fine particles and compressing it into a smooth and flat XRF pellet reduces background scattering and improves the detection of emissions. Pressed pellets are also relatively quick, low-cost, and lend themselves to simple and cost-effective automation for higher throughput laboratories.

What Considerations Should Be Taken When Selecting A Laboratory Hydraulic Machine?

When selecting a laboratory hydraulic machine, several factors should be considered. The force capacity should match the specific application and the maximum force expected. The size and configuration of the hydraulic cylinder should accommodate the sample size and shape. The machine should have precise control over the applied force, displacement, or strain, with user-friendly software or control panels. Safety features, such as emergency stop buttons and protective shields, should be evaluated. It is important to ensure that the machine is constructed from durable materials and designed for long-term use. Additionally, it is crucial to consider the availability of accessories or fixtures to hold the samples securely during testing.

What Factors Should Be Considered When Selecting A Pellet Press?

Several factors should be considered when selecting a pellet press. These include the desired pellet size and shape, the material properties, the required production capacity, and the available space and resources. The type and condition of the material being processed, such as its moisture content, particle size, and flowability, can also influence the selection of the pellet press. Additionally, factors such as the power requirements, ease of operation and maintenance, and the availability of spare parts and technical support should be considered. It is important to choose a pellet press that aligns with the specific requirements and objectives of the application to ensure optimal performance and cost-effectiveness.

Application Field Of Cold Isostatic Press?

Cold Isostatic Pressing is widely used for various applications, including the consolidation of ceramic powders, compression of graphite, refractory materials, and electrical insulators, as well as the production of fine ceramics for dental and medical applications.

This technology is also making inroads into new fields such as pressing sputtering targets, coating valve parts in engines to reduce wear on cylinder heads, telecommunications, electronics, aerospace, and automotive industries.

How To Make KBr Pellets For FTIR?

To make KBr pellets for FTIR, a pellet press die set, pestle and mortar, and IR-transparent medium, such as KBr, are required. The KBr and sample are mixed in a mortar, and the resulting mixture is pressed into a disc using a die set and a hydraulic press. The pellet should be thin, transparent, and contain only a small amount of the sample. The typical ratio of KBr to sample is 100:1. KBr is hygroscopic, so it should be stored in a dry environment and prepared in a glovebox or with a vacuum die to avoid moisture absorption.

What Are The Wearing Parts Of Cold Isostatic Pressing Equipment?

The wearing parts of cold isostatic equipment are mainly various seals, such as various types of seal rings, valve cores and valve seats.

Do You Provide Matching Cold Isostatic Press Molds?

We offer a variety of standard mold shapes for customers to experiment or validate their process. Custom mold design services are also available upon request.

View more faqs for this product

4.9

out of

5

The KBr Pellet Press 2T is a game-changer for our lab. It's compact, easy to use, and delivers consistent results.

Eamonn Ortiz

4.8

out of

5

The KBr Pellet Press 2T has significantly improved our sample preparation process. It's reliable, efficient, and produces high-quality pellets.

Manuela Nemec

4.7

out of

5

The KBr Pellet Press 2T is an excellent piece of equipment. It's well-built, durable, and makes preparing KBr pellets a breeze.

Marcelino Kuhn

4.6

out of

5

The KBr Pellet Press 2T is a valuable addition to our lab. It's easy to operate, produces consistent results, and saves us time.

Kateri Stokes

4.8

out of

5

The KBr Pellet Press 2T is a great investment. It's affordable, easy to maintain, and has helped us improve the quality of our analyses.

Patricio Rocha

4.7

out of

5

The KBr Pellet Press 2T is a versatile tool. It's suitable for various applications and produces high-quality pellets every time.

Lidia Manfredini

4.9

out of

5

The KBr Pellet Press 2T is a lifesaver. It's easy to use, produces reliable results, and has significantly improved our productivity.

Osvaldo Green

4.6

out of

5

The KBr Pellet Press 2T is a well-designed instrument. It's compact, portable, and produces high-quality pellets with minimal effort.

Ivana Tomic

PDF - kbr pellet press 2T

Download

Catalog of Manual Lab Press

Download

Catalog of Kbr Pellet Press

Download

Catalog of Manual Lab Press

Download

Catalog of Xrf Pellet Press

Download

Catalog of Lab Hydraulic Press

Download

Catalog of Pellet Press

Download

Catalog of Lab Press

Download

Catalog of Cold Isostatic Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Efficient sample preparation with small footprint Manual Lab Hydraulic Press. Ideal for material researching labs, pharmacy, catalytic reaction, and ceramics.

Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Efficiently prepare samples with the Electric Hydraulic Press. Compact and portable, it's perfect for labs and can work in a vacuum environment.

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Efficiently prepare samples with a split electric lab press - available in various sizes and ideal for material research, pharmacy, and ceramics. Enjoy greater versatility and higher pressure with this portable and programmable option.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Lab scale rotary tablet punching machine

Lab scale rotary tablet punching machine

This machine is a single-pressure automatic rotating, continuous tableting machine that compresses granular raw materials into various tablets. It is mainly used for tablet production in the pharmaceutical industry, and is also suitable for chemical, food, electronics and other industrial sectors.

Manual Lab Heat Press

Manual Lab Heat Press

Manual hydraulic presses are mainly used in laboratories for various applications such as forging, molding, stamping, riveting and other operations. It allows the creation of complex shapes while saving material.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Single Punch Electric Tablet Press Laboratory Powder Tablet Machine

Single Punch Electric Tablet Press Laboratory Powder Tablet Machine

The single-punch electric tablet press is a laboratory-scale tablet press suitable for corporate laboratories in pharmaceutical, chemical, food, metallurgical and other industries.

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure is a device that uses pressure saturated steam to quickly and effectively sterilize items.

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Efficient Manure Lab Hydraulic Press with Safety Cover for sample preparation in material research, pharmacy, and electronic industries. Available in 15T to 60T.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

lab pellet press for vacuum box

lab pellet press for vacuum box

Enhance your lab's precision with our lab press for vacuum box. Press pills and powders with ease and precision in a vacuum environment, reducing oxidation and improving consistency. Compact and easy to use with a digital pressure gauge.

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Experience efficient sample preparation with our Automatic Lab Press Machine. Ideal for material research, pharmacy, ceramics, and more. Features a compact size and hydraulic press functionality with heating plates. Available in various sizes.

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Related Articles

The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The benchtop KBr pellet press is a versatile and efficient tool that produces uniform pellets, ensuring consistent and reliable results. In addition, its adjustable mold can be used flexibly to accommodate a variety of sample sizes and shapes.

Find out more
An In-Depth Guide on Laboratory Presses and KBr Pellets Production

An In-Depth Guide on Laboratory Presses and KBr Pellets Production

In the world of scientific research and analysis, laboratory presses and KBr pellet production play a crucial role. These tools are essential in the preparation of samples for various analytical techniques, such as infrared spectroscopy and XRF spectroscopy.

Find out more
A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

XRF (X-ray fluorescence) analysis is a powerful technique used in various industries for material analysis. One crucial step in the XRF analysis process is the preparation of high-quality XRF pellets. These pellets serve as the sample for analysis and need to be properly pressed to ensure accurate results.

Find out more
Exploring the Benchtop KBr Pellet Press: Features, Mechanism, and Applications

Exploring the Benchtop KBr Pellet Press: Features, Mechanism, and Applications

The benchtop KBr pellet press is a versatile and essential tool in a variety of laboratory settings. Whether you work in pharmaceuticals, biology, nutrition, or spectroscopy, this compact and user-friendly press will simplify your sample preparation process.

Find out more
Benchtop KBr Pellet Press: A Comprehensive Overview

Benchtop KBr Pellet Press: A Comprehensive Overview

If you're looking for a way to compress powdered materials into uniform pellets without contamination, then the KBr Pellet Press might just be the perfect solution for you. Whether you're working in a pharmaceutical, biological, nutrition, or spectrographic lab, this hand-operated press offers convenience and efficiency in a small package.

Find out more
Automated laboratory XRF and KBR pellet press operating procedures

Automated laboratory XRF and KBR pellet press operating procedures

Introduction to automated laboratory XRF and KBR pellet press operating procedures.

Find out more
Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

The manual hydraulic pellet press offers several key features that make it a valuable tool for laboratory applications. Some of the main features include:Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Designed pressure force display in 10 kN steps;Ease of operation via hand lever;Convenience in cleaning;Single-stage piston stroke of maximum 25mm ect.

Find out more
Comprehensive Guide to Manual Hydraulic Pellet Press

Comprehensive Guide to Manual Hydraulic Pellet Press

A manual hydraulic pellet press is a valuable tool in the laboratory for preparing pellets with a smooth and homogeneous surface for spectral analyses. It is commonly used in applications such as X-ray fluorescence analysis or infrared spectroscopy for elemental analysis.

Find out more
Choosing the Right Lab Press: A Comprehensive Guide

Choosing the Right Lab Press: A Comprehensive Guide

When choosing a lab press, it is important to consider the load or force that will be applied to the sample. This will ensure that the press is capable of providing the necessary pressure for your specific application.

Find out more
How to choose a laboratory hot press

How to choose a laboratory hot press

The laboratory hot pressing machine is suitable for laboratory users who are strict about sample pressing temperature, pressure control accuracy and need a wide size mold for pressing samples. The new lab hot press of KINDLE TECH has a double-plate structure and a pressing force of 0~40 tons.

Find out more
Understanding the Functioning and Applications of a Hydraulic Pellet Press

Understanding the Functioning and Applications of a Hydraulic Pellet Press

A hydraulic press is a compression device that makes use of an exerted force placed upon a fluid, to create a resulting force according to Pascal’s Law. It was actually invented by Joseph Bramah, so is also known as the Bramah Press.

Find out more
FTIR Pellet Press The Ultimate Solution for Precise Sample Preparation

FTIR Pellet Press The Ultimate Solution for Precise Sample Preparation

Fourier Transform Infrared (FTIR) spectroscopy is a powerful analytical technique that can be used to identify and quantify the chemical components of a sample. However, to obtain accurate and reliable results, it is crucial to prepare the sample appropriately.

Find out more