Thematics Kbr Pellet Press

kbr pellet press

The KBR Pellet Press is a hand-operated press used to compress powdered materials into pellets without the need for expensive laboratory presses and pellet dies. It is designed to produce uniform cylindrical pellets with flat ends that can be used for spectrographic analysis. The press system uses hand pressure on a lever attached to a large steel cam to develop compressive force. The anvil which supports the die can be adjusted to produce pellets of any desired thickness, making it ideal for laboratories engaged in pharmaceutical, biological, nutrition and spectrographic operations. The KBR Pellet Press is portable, compact, and requires very little bench space.


Our KBR PELLET PRESS is an affordable solution for compressing powdered materials into pellet form. It is a compact, hand-operated press that requires very little bench space and no fixed mounting. Our press system provides a steadily increasing mechanical advantage up to a ratio of approximately 50 to 1 at the end of the stroke. Thus, a force of 20 pounds applied to the lever develops approximately 1000 pounds on the press ram. Our KBR PELLET PRESS produces uniform pellets in a polished die and ejects them smoothly into a receiver without incident of contamination. We also offer custom design services to cater to your specific requirements.

Applications of KBR Pellet Press

  • Fabricating pellets for laboratories engaged in pharmaceutical, biological, nutrition, and spectrographic operations
  • Preparing small samples to be analyzed in an emission spectrometer
  • Producing uniform pellets in a polished die and ejecting them smoothly into a receiver without incident of contamination
  • Creating cylindrical shaped pellets with flat ends
  • Adjusting the amount of pressure applied to a pellet by using the variable anvil setting
  • Making duplicate pellets of equal density by using equal amounts of sample and leaving the anvil at a fixed setting while taking the ram through its full stroke when forming each pellet.

Advantages of KBR Pellet Press

  • Provides a cost-effective means for compressing powdered materials into pellet form without incurring the cost normally associated with expensive laboratory presses and pellet dies.
  • Compact, hand-operated press that can be used anywhere in the laboratory, requiring very little bench space and no fixed mounting.
  • Produces uniform pellets in a polished die and ejects them smoothly into a receiver without incident of contamination.
  • Ideal for fabricating pellets for laboratories engaged in pharmaceutical, biological, nutrition and spectrographic operations.
  • Spectroscopists find this device excellent for preparing small samples to be analyzed in an emission spectrometer.
  • Produces cylindrical pellets in a polished die with flat ends.
  • Height or thickness of the pellets can be adjusted depending upon the amount of material compressed and the force applied.
  • Dies are not fastened down, which makes it easy to quickly reload.
  • Anvil can be raised or lowered to produce pellets of any desired thickness using the maximum force of the press.
  • Variable anvil setting can be used as a means for adjusting the amount of pressure applied to a pellet.
  • Hand-operated press that makes excellent transparent KBr pellets with minimal work.
  • Requires virtually no lab space and is portable.
  • Ideal for creating small samples that can be analyzed in an emission spectrometer.
  • Comes with an affordable price tag compared to other laboratory pellet presses.

FAQ

What Is KBr Used For?

KBr, or potassium bromide, is commonly used in laboratories as a matrix for infrared spectroscopy. It is mixed with an organic sample and compressed into a pellet using a press like the benchtop KBr Pellet Press. The resulting pellets are used for analysis of the sample's molecular structure and composition. KBr is also used for briquetting inorganic samples for x-ray fluorescence spectroscopy and for pressing thin polymer films using heated platens for transmission sampling by IR spectroscopy. It is an important tool for researchers in the fields of pharmaceuticals, biology, nutrition and spectroscopy.

What Is The KBr Pellet Method?

The KBr pellet method is a technique used in spectroscopy to analyze solids. It involves compressing powdered materials into pellet form using a compact, hand-operated press called the KBr Pellet Press. The resulting pellets are cylindrical in shape and can be of any desired thickness. This method is particularly useful in pharmaceutical, biological, nutrition, and spectrographic operations, and provides advantages such as using less sample than ATR, higher signal-to-noise, and control over signal intensity by changing sample concentration or increasing pathlength. It also offers clear advantages in detecting trace contaminants.

Why KBr Is Used For Pellet?

KBr (potassium bromide) is used for pellet preparation because it is a stable, transparent, and inexpensive salt that is easy to obtain in high purity. When a sample is mixed with KBr powder and compressed into a pellet using a press, it forms a flat, uniform disc with a consistent thickness. KBr pellets are commonly used in spectroscopy applications to analyze solid samples because they provide a clear and reproducible path for infrared light to pass through, which allows for accurate measurements of the sample's chemical composition.

How To Make KBr Pellets For FTIR?

To make KBr pellets for FTIR, a pellet press die set, pestle and mortar, and IR-transparent medium, such as KBr, are required. The KBr and sample are mixed in a mortar, and the resulting mixture is pressed into a disc using a die set and a hydraulic press. The pellet should be thin, transparent, and contain only a small amount of the sample. The typical ratio of KBr to sample is 100:1. KBr is hygroscopic, so it should be stored in a dry environment and prepared in a glovebox or with a vacuum die to avoid moisture absorption.

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!


Related Articles

The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

The Ritual of Clarity: A Systemic Approach to Cleaning Furnace Tubes

Cleaning a furnace tube isn't just maintenance; it's calibration. Learn the diagnostic process for quartz and alumina tubes to prevent contamination.

Read more
Why Your Forge Welds Fail: The Hidden Power of Pressure Over Impact

Why Your Forge Welds Fail: The Hidden Power of Pressure Over Impact

Tired of inconsistent Damascus billets and exhausting forging sessions? Discover the root cause and why a hydraulic press is the fix.

Read more
Why Your Leather Embossing Is Inconsistent—And How to Fix It for Good

Why Your Leather Embossing Is Inconsistent—And How to Fix It for Good

Struggling with faint, blurry, or scorched leather embossing? Discover the scientific reason it fails and how to achieve perfect, repeatable results.

Read more
Beyond Heat: Why Pressure is the Deciding Factor in Advanced Materials

Beyond Heat: Why Pressure is the Deciding Factor in Advanced Materials

Explore the critical trade-offs between hot pressing and sintering. Learn how pressure transforms material properties, costs, and project outcomes.

Read more
The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

The Pressure Paradox: Why More Isn't Always Better in Hot Press Sintering

Increasing pressure in hot press sintering speeds densification but risks hidden flaws like anisotropy. Mastering this trade-off is key to superior materials.

Read more
Uniformity Over Form: The Hidden Genius of Cold Isostatic Pressing

Uniformity Over Form: The Hidden Genius of Cold Isostatic Pressing

Discover why Cold Isostatic Pressing sacrifices initial shape accuracy to achieve the uniform density critical for flawless, high-integrity final parts.

Read more
Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Forged Under Pressure: The Unseen Science of High-Durability Lab Surfaces

Discover how hot press lamination forges non-porous, chemical-resistant surfaces, making it the ideal foundation for modern laboratory furniture.

Read more
From Dust to Density: The Microstructural Science of Hot Pressing

From Dust to Density: The Microstructural Science of Hot Pressing

Hot pressing isn't just shaping material; it's a micro-engineering process that eliminates hidden voids to create parts with near-perfect density and strength.

Read more
Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Why Your Compacted Parts Fail: The Hidden Flaw Your Sintering Furnace Can't Fix

Struggling with inconsistent powder-pressed parts? The real flaw isn't your furnace. Learn how Cold Isostatic Pressing ensures flawless results.

Read more
The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

The Hidden Reason Your Powder Metallurgy Parts Keep Failing (And It’s Not Your Furnace)

Tired of cracked sintered parts? The problem isn't your furnace. Learn the real root cause—uneven density—and how Cold Isostatic Pressing fixes it.

Read more
The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

The Geometry of Cleanliness: Why Surface Integrity Defines Electrochemical Success

Master the art of electrolytic cell maintenance. Discover how a tiered cleaning protocol prevents contamination and ensures experimental reproducibility.

Read more
Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Why Your Lab Press Fails: It's Not the Tonnage, It's the Steel

Discover the hidden reason your hydraulic press gives inconsistent results. Learn why the choice of steel is more critical than tonnage for safety and accuracy.

Read more
Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Why Your Lab Pellets Crack: The Hidden Physics of a Perfect Press

Stop blaming your powder. Discover the real reason your lab pellets fail and how a precision hydraulic press solves inconsistent sample prep for good.

Read more
The Invisible Geography of Heat: Why "Max Temperature" is a Trap

The Invisible Geography of Heat: Why "Max Temperature" is a Trap

In thermal processing, maximum temperature is often a vanity metric. Discover why the "Uniform Heated Zone" is the true architect of repeatability.

Read more
Why Your Lab's Hydraulic Press Keeps Failing (It’s Not What You Think)

Why Your Lab's Hydraulic Press Keeps Failing (It’s Not What You Think)

Discover the three 'silent killers' of lab hydraulic presses, like off-center loading and fluid contamination, and how to prevent costly failures.

Read more
Why Your Sample Prep Fails: The Hidden Flaw in Your Hydraulic Press

Why Your Sample Prep Fails: The Hidden Flaw in Your Hydraulic Press

Frustrated with cracked pellets and inconsistent lab press results? Discover the hidden material flaw in your equipment and how to fix it for good.

Read more
Your Hydraulic Press Is Hot. Here’s Why It’s a Bigger Problem Than You Think.

Your Hydraulic Press Is Hot. Here’s Why It’s a Bigger Problem Than You Think.

Is your lab's hydraulic press overheating? Learn why this is a critical sign of wasted energy and impending failure, and how to fix it permanently.

Read more
How to Choose Laboratory Vacuum Pumps for Maximum Efficiency and Cost Savings

How to Choose Laboratory Vacuum Pumps for Maximum Efficiency and Cost Savings

Learn how to choose the right lab vacuum pump for efficiency & cost savings. Compare oil-sealed vs. oil-free pumps & future-proof your investment.

Read more
Cryogenic Pulverization Technology and Its Applications

Cryogenic Pulverization Technology and Its Applications

Explores the process, advantages, disadvantages, and applications of cryogenic pulverization in various fields.

Read more
10 Common Dry Ultrafine Crushing Processes

10 Common Dry Ultrafine Crushing Processes

Overview of various dry ultrafine crushing methods and their components.

Read more