Products Sample Preparation Manual Lab Press Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T
Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Manual Lab Press

Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Item Number : PCMP

Price varies based on specs and customizations


Working pressure
0-40 T
Piston diameter
Φ70-Φ130 mm
Piston stroke
30 mm
Gauge range
0-40 Mpa
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

Lab Hydraulic press is widely used in material researching labs,pharmacy,catalytic reaction,ceramics, electronic industries, it is one high efficient equipment for the sample preparing, due to its small footprint, it easy to carry and move, can work inside the vacuum glove box for processing under vacuum environment.

Applications of manual Hydraulic Press

Feature

Manual Lab Hydraulic Press above 60T can be designed according to your needs.

  1. Small footprint, light weight, easy to carry and move, nice fitting vacuum glove box
  2. Pressure gauge with double pressure indicator, save pressure converting time
  3. 12-24T model machine output sample can meet requirement of infrared spectrometer
  4. 24-40T  model machine output sample can meet requirement of fluorescence spectrometer
  5. Double scale dial to avoid complicated conversions

Detail & Parts

Manual Hydraulic Press 1Manual Hydraulic Press 2

Details of Manual Lab Press

Mechanical disassembly diagram
1.Top board 2.Spring screw 3.Column 4.Oil cylinder 5.Drag spring 6.Cylinder 7.Mainboard 8.Oil discharge 9.Latch 10.Pressure gauge 11.Gauge column 12.Pressurization 13.Oil filler screw 14.Oil sump 15.Eccentric shaft 16.Sealing ball 17.Screw rod 18.Top board screw 19.Oil sump cover 20.Spring 21.Plunger lever 22.Pressure screw 23.Semicircle gasket 24.Guide sleeve 25.Hand-wheel 26.Screw head 27.Top cover 28.Sealing ball 29.Plunger 30.Sealing ball 31.Spring 32.Screw

Product features

  1. Top board uses electroplated countersunk socket head cap screws, which are beautiful, space saving and smooth.
  2. Chrome-plated oil cylinder features smooth surface, rust prevention, excellent rubber gasket sealing and leakage-proof.
  3. Oil sump, mainboard and oil cylinder are integrated on the same mainboard, and no sealing connection is needed.
  4. Extended tension spring with excell-entresilience ensures that the oil cylinder won't deform easily in 30mm return trip.
  5. Aluminum alloy hand-wheel,beautiful,practical,sturdy and durable.
  6.  Small size, light weight,leak-proof, easy to handle,suitable for use in glove box.
  7. Dies are made of quick-cutting steel imported from Japan, featuring quality material, high hardness, non-deformation and long life.
  8. Digital pressure gauge offers pressure control as accurate as 0.01MPa.
  9. 0il sump is on the surface of the main unit to facilitate oil cha -nging, and hydraulic filter is installed in the oil circuit.
  10. Dedicated plunger uses specially customized structure to ensure sealing effect and prevent leakage.
  11. Pressure device Is placed in the bottom of the main unit, which ensures reasonable angle and saves  pressurizing force.

Advantages

  1. The upper plate adopts electroplated countersunk head hexagonal screws, beautiful and space-saving
  2. Chrome-plated cylinder, smooth surface, no rust, good sealing rubber ring, no oil leakage
  3. One-piece main board structure, oil pool, main board, oil cylinder in a body, no seal connection
  4. Extended pulling spring, good rebound effect, not easy to deformation, can achieve the cylinder 30mm return without deformation
  5. All aluminum alloy hand wheel, beautiful, practical, not easy to break
  6. Small size, light weight, no oil leakage, can be used in the glove box
  7. Mold using Japanese high-speed steel, good material, high hardness, no deformation, long service life
  8. Digital display pressure gauge, more accurate pressure control, pressure display accuracy of 0.01MPa
  9. Oil pool outside the host, easy to replace the oil, and the oil circuit increased the hydraulic oil filtration device
  10. Special plunger, using special custom sealing structure, excellent sealing effect
  11. Pressurizing device, placed in the lowermost corner of the mainframe, the angle is reasonable, pressurizing force does not tilt back

Technical specifications

Instrument model PCMP-2T PCMP-5T PCMP-12T PCMP-15T PCMP-24T PCMP-30T PCMP-40T
Pressure range 0-2T (25MPa) 0-5T(0-31.4MPa) 0-12T(0-30MPa) 0-15T(0-30MPa) 0-24T(0-34MPa) 0-30T(0-31.5MPa) 0-40T(0-30MPa)
Piston diameter Φ32mm (d) Φ45mm (d) Φ70mm (d) Φ80mm (d) Φ95mm (d) Φ110mm (d) Φ130mm (d)
Integral structure No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced No sealing connection, oil leakage reduced
Pressure gauge Pressure and pressure intensity display Pressure and pressure intensity display Pressure and pressure intensity display Pressure and pressure intensity display Pressure and pressure intensity display Pressure and pressure intensity display Pressure and pressure intensity display
Maximum pressure (T) 30mm  30mm 30mm 30mm 30mm 40mm (T) 50mm (T)
Pressure stability ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min ≤1MPa/10min
Workbench diameter Φ50mm (D) Φ80mm (D) Φ80mm (D) Φ90mm (D) Φ105mm (D) Φ120mm (D) Φ140mm (D)
Number of columns Two Two Two Two Four Four Four
Working space 85×120mm(M×N) 96×130mm(M×N) 96×130mm(M×N) 140×150mm(M×N) 80×150mm(M×N) 92×160mm(M×N) 106×185mm(M×N)
Dimensions 210×150×350mm(L×W×H) 225×155×380mm(L×W×H) 225×155×380mm(L×W×H) 245×175×390mm(L×W×H) 245×175×415mm(L×W×H) 275×195×420mm(L×W×H) 295×215×500mm(L×W×H)
Weight 12 Kg 28Kg 28Kg 38Kg 42Kg 56Kg 75Kg
Diagram of hydraulic powder press size
Diagram of hydraulic powder press size

Operation

How to replace accessories and precautions

Please click the link

Step 1: Power on the automatic sealer.

Step 1: Put the die in the center of the hydraulic press.

 Step 2: Press the Settings button to enter the settings menu.

Step 2: Rotate the oil drain valve clockwise of the hydraulic press.

Step 3: Adjust the maximum pressure and packing time, etc.

Step 3: Tighten the screw rod to fix the die.

Step 4:  Place the coin cell battery case into the mold.

Step 4: Swing the handle lever back and forth to reach desired pressure.

Step 5:  Press the Start button to start the sealing process.

Step 5: Rotate the oil drain valve counterclockwise to release the pressure.

Step 6: Place the coin cell battery case into the mold.

Step 6: Take out the pressed die from the hydraulic press.

Full range of lab press types

Full range of lab press types

Click to view our full range of lab press products.

Any question? Our experts have helped many laboratories choose their lab press, contact us now!

Full range of types of laboratory press molds

We have a full range of molds for you to choose from, and the molds fit the body perfectly.

If you need molds with special shapes, we can also customize them for you.

laboratory press mold

Click to see all press molds.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Are The Advantages Of Using A Manual Press?

Manual presses offer several advantages in industrial and workshop settings. They are simple to operate, requiring minimal training or expertise. The manual operation allows for precise control over the applied force, making them suitable for delicate or precise tasks. Manual presses are often more cost-effective compared to automated or hydraulic presses, making them a popular choice for small-scale operations or workshops with limited budgets. They are portable and do not require a power source, allowing for flexibility in their usage. Manual presses are also known for their durability and reliability, requiring minimal maintenance and having a long lifespan.

How Does A Manual Press Work?

A manual press works by utilizing manual force to apply pressure or force on a workpiece. The press typically consists of a frame, a lever or handle, and a mechanism for transmitting and amplifying the force. When the lever or handle is actuated, it moves a ram or plunger that applies pressure to the workpiece. The press may feature adjustable stops or gauges to control the depth or force of the applied pressure. The size and configuration of the press determine the maximum force that can be applied. Manual presses often use mechanical advantage, such as a leverage system, to multiply the force exerted by the operator. The force is transmitted to the workpiece, allowing for various operations like pressing, bending, punching, or riveting.

What Types Of Tasks Can Be Performed Using A Manual Press?

Manual presses are versatile tools that can perform a variety of tasks. They are commonly used for pressing operations, such as assembling parts, forming or bending metal, or compressing materials. Manual presses can also be used for punching or riveting tasks, where holes need to be created or metal components need to be joined together. Additionally, manual presses are employed in tasks like embossing, stamping, or crimping, where pressure is applied to create specific shapes or patterns. The wide range of available dies, molds, or attachments allows for customization and adaptability to different applications.

What Are Laboratory Hydraulic Machines?

Laboratory hydraulic machines are precision instruments used in scientific and industrial settings for applying controlled force and pressure to samples or materials. These machines utilize hydraulic systems to generate the force required for various applications, such as compression testing, material characterization, and sample preparation.

What Is A Lab Press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What Are The Main Types Of Glass Materials Available?

The main types of glass materials include Alkali-free/Boro-aluminosilicate glass, Optical ultra-clear glass, K9 quartz glass, Soda-lime optical glass, High-temperature resistant optical quartz glass, Glass oscillating beads, High borosilicate glass stirring rods, Glassy carbon sheets, Infrared silicon lenses, Glassy carbon electrodes, Glass tissue grinders, Micro-injectors, Lab pellet presses, and PTFE measuring cylinders.

What Are The Advantages Of Using A Hydraulically Heated Laboratory Press?

Hydraulically heated laboratory presses offer several advantages in scientific research and material characterization. The hydraulic system provides precise and adjustable pressure control, allowing researchers to apply specific pressure levels to samples. The inclusion of a heating element enables precise temperature control, facilitating experiments that require elevated temperatures or thermal treatments. The presses are also versatile and can accommodate a wide range of sample sizes and shapes. They are commonly used for applications such as powder compaction, material synthesis, sample preparation for spectroscopic analysis, and polymer molding. The combination of pressure and heat in a single machine streamlines experimental processes and offers researchers greater control over their experimental conditions.

What Are The Advantages Of Using Laboratory Hydraulic Machines?

Laboratory hydraulic machines offer several advantages in terms of their force capacity, precision, and versatility. They can generate high forces, making them suitable for testing or processing materials that require significant pressure. Hydraulic machines provide precise control over the applied force, allowing for accurate and repeatable results. They are often equipped with load cells or sensors to measure and monitor the force or displacement during testing. Hydraulic machines can accommodate a wide range of sample sizes and shapes, making them versatile for various applications. Additionally, they can operate at different speeds, providing flexibility for different testing or processing requirements.

What Is The Purpose Of A Hydraulic Press In Lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What Are The Applications Of Pellet Presses?

Pellet presses have a wide range of applications across various industries. They are commonly used in the pharmaceutical industry to produce uniform and compacted pellets for drug formulations. In the food industry, pellet presses are used to create animal feed pellets, as well as pellets for snacks and breakfast cereals. Pellet presses are also used in the chemical industry for catalysts, fertilizers, and chemical additives. Additionally, they find application in the biomass industry for the production of wood pellets for fuel, as well as in the metallurgical industry for the production of metal pellets for further processing.

What Is A Press Mold?

A press mold is a device used in material processing methods such as cold isostatic pressing (CIP) and metal mold pressing to create molded bodies from powder materials. In CIP, the mold containing the powder is immersed in a pressure medium, and isostatic pressure is applied to the outer surfaces of the mold to compress the powder into a shape. Metal mold pressing applies only uniaxial pressure to the powder material to create molded bodies. CIP can produce products with uniform density and homogeneity due to no frictions with a metal mold.

How Do Electric Laboratory Presses Work?

Electric laboratory presses typically consist of a motor-driven ram or piston that applies force to a sample through a platen or die. The electric motor is controlled by a control panel, allowing the user to set and adjust the desired force and speed. The sample is placed between the platens, and as the motor drives the ram, the force is applied, exerting pressure on the sample. This controlled pressure enables various processes such as compression testing, powder compaction, sample preparation, and material synthesis.

What Are The Applications Of Borosilicate Glass?

Borosilicate glass is highly resistant to thermal expansion, making it suitable for applications that require resistance to temperature changes, such as laboratory glassware and cooking utensils. It is also used in optical applications due to its clarity and durability.

What Is Cold Isostatic Pressing (CIP)?

Cold Isostatic Pressing (CIP) is a process used to compact and mold powders and other materials into a desired shape by applying hydrostatic pressure at room temperature. The process is performed using a flexible mold, typically made of rubber or plastic, that is filled with a liquid pressure medium such as water, oil, or a specialized fluid.

What Does A Hydraulic Lab Heat Press Do?

A hydraulic lab heat press is a machine that uses fluid pressure to generate force and heat to melt powdered material and compress it into the desired shape and size for lab applications. It is used to create a wide range of samples, pellets, and test specimens for materials such as polymers, composites, ceramics, and pharmaceuticals. The lab press can be a benchtop or floor unit and can generate from 15 to over 200 tons of compressive force. It has heated platens that can range from 50℃ to 500℃.

What Are The Applications Of Laboratory Hydraulic Machines?

Laboratory hydraulic machines find applications in diverse fields, including materials science, engineering, geotechnical testing, and quality control. They are commonly used for compression testing of materials, including metals, polymers, ceramics, and composites. Hydraulic machines are employed in tensile testing, bending tests, and fatigue testing, allowing for the characterization of material properties. These machines are also used in geotechnical testing to assess the strength and stability of soils or rock samples. Additionally, hydraulic machines can be utilized for sample preparation, such as pelletizing or briquetting powdered materials.

What Are Different Type Of Lab Presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

How Do You Prepare Pressed Pellets For XRF?

Pressed pellets for XRF analysis are prepared by grinding the sample to a fine particle size and mixing it with a binder or grinding aid. The mixture is then poured into a pressing die and compressed at a pressure of between 15 and 35T. The resulting pellet is ready for analysis. It is important to consider the particle size of the sample, choice of binder, sample dilution ratio, pressure used for pressing, and the thickness of the pellet when designing a sample preparation recipe. Consistency in the preparation procedure is key to ensuring accurate and repeatable results.

How Does A Pellet Press Work?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

What Is Press Mould In Ceramics?

Press moulding is a ceramic forming technique that involves the compaction of powders by applying either a rigid or flexible pressure. It can be either uniaxial or isostatic, depending on the shape required. Isostatic pressing is used for shapes that cannot be obtained by uniaxial pressing or for added value products that require high density and isotropic green bodies. The molds for axial-pressing are usually made of steel, while those for isostatic pressing are made of elastomers, silicone, and polyurethanes. This technology is applied in various fields like ceramics, MMC, CMC, and Silicon nitride for cutting tools, components of heavy-duty valves, wear parts for process technology, and more.

What Are The Advantages Of Using Electric Laboratory Presses?

Electric laboratory presses offer several advantages over manual or hydraulic presses. The electric motor provides precise control over the applied force, allowing for accurate and repeatable results. They offer adjustable speed and force settings, making them versatile for different applications and materials. Electric presses are generally quieter, cleaner, and more energy-efficient compared to hydraulic systems. Additionally, they eliminate the need for hydraulic fluid and associated maintenance. Electric presses also have a smaller footprint, making them suitable for laboratory environments with limited space.

What Is KBr Used For?

KBr, or potassium bromide, is commonly used in laboratories as a matrix for infrared spectroscopy. It is mixed with an organic sample and compressed into a pellet using a press like the benchtop KBr Pellet Press. The resulting pellets are used for analysis of the sample's molecular structure and composition. KBr is also used for briquetting inorganic samples for x-ray fluorescence spectroscopy and for pressing thin polymer films using heated platens for transmission sampling by IR spectroscopy. It is an important tool for researchers in the fields of pharmaceuticals, biology, nutrition and spectroscopy.

What Are The Advantages Of Using Optical Glass In Laboratory Settings?

Optical glass is manufactured using specific chemicals that enhance properties crucial for optics applications, such as clarity, refractive index, and durability. It is widely used in telecommunications, astronomy, and other fields requiring precise light manipulation.

What Types Of Samples Or Materials Can Be Processed In A Hydraulically Heated Laboratory Press?

Hydraulically heated laboratory presses can process a wide range of samples and materials. They are commonly used for powders, granules, pellets, and other solid forms. The presses are particularly useful for compacting powders into tablets or pellets for subsequent analysis or material characterization. They can also be used for synthesizing materials through processes such as hot pressing or sintering. In addition, the presses can handle materials such as polymers or composites, allowing for molding or shaping experiments. The versatility of hydraulically heated laboratory presses makes them suitable for various applications in materials science, chemistry, geology, and other scientific disciplines.

What Is Manually Operated Lab Press?

A manually operated lab press, also known as a manual hydraulic press, is a type of laboratory equipment that uses hydraulic pressure to compress or compact a sample. It typically consists of a cylinder filled with hydraulic oil that supplies pressure to a moving piston, which is operated using a hand-operated pump. Manual presses are often used in laboratories to prepare samples for analysis, such as KBr pellets for FTIR spectroscopy or general sample pellets for XRF. They are available in different sizes and capacities and are often cheaper than their automatic counterparts.

What Are The Main Components Of A Laboratory Hydraulic Machine?

The main components of a laboratory hydraulic machine include a hydraulic pump, a hydraulic cylinder, a piston, valves, gauges, and a control panel. The hydraulic pump generates pressure by forcing hydraulic fluid into the cylinder. The hydraulic cylinder houses the piston, which applies force to the sample or material. Valves control the flow of hydraulic fluid, allowing for precise control over the applied force. Gauges measure and display the force or pressure being applied. The control panel or software enables users to set and adjust parameters such as force, displacement, or strain.

What Pressure Should XRF Pellets Be?

XRF pellets should be pressed at pressures between 15 and 40 tons for 1-2 minutes to ensure that the binder recrystallizes and that there are no void spaces present in the pellet. The pressure applied by the hydraulic press should be enough for the sample to be completely compressed. The thickness of the pellet is also crucial, as it must be infinitely thick to the X-rays. Working with small particle sizes (<50µm or <75µm) is also important for effective analysis. These factors impact how well the sample binds together under pressure, which affects the analytical results.

What Are The Benefits Of Using A Pellet Press?

A pellet press works by feeding the material into a chamber where it is compressed by a rotating roller or extrusion plate. The pressure applied forces the material through a die with holes of a specific size and shape, which determines the size and shape of the pellets. The pellets are then cut to the desired length and collected for further processing or packaging. Some pellet presses may also include additional steps, such as drying or cooling the pellets, depending on the specific application.

How Are Pellet Molds Used?

To use a pellet mold, the powdered or granular material is first loaded into the mold cavity. The material is then compacted by applying pressure using a laboratory press or hydraulic machine. The pressure causes the material to conform to the shape of the mold, resulting in a solid pellet or cylindrical sample. After the compaction process, the pellet is removed from the mold and can be further processed or analyzed as needed.

What Are The Applications Of Electric Laboratory Presses?

Electric laboratory presses find applications in a wide range of scientific and industrial settings. They are commonly used for compression testing of materials, including polymers, metals, ceramics, and composites. These presses are also employed in powder compaction processes, such as tabletting in pharmaceutical manufacturing or the preparation of powdered samples for analysis. Electric presses are used for material synthesis, such as the formation of thin films or the fabrication of electrodes. Additionally, they are utilized in research and development for sample preparation, sample extrusion, and various other processes that require precise application of force and pressure.

What Is The KBr Pellet Method?

The KBr pellet method is a technique used in spectroscopy to analyze solids. It involves compressing powdered materials into pellet form using a compact, hand-operated press called the KBr Pellet Press. The resulting pellets are cylindrical in shape and can be of any desired thickness. This method is particularly useful in pharmaceutical, biological, nutrition, and spectrographic operations, and provides advantages such as using less sample than ATR, higher signal-to-noise, and control over signal intensity by changing sample concentration or increasing pathlength. It also offers clear advantages in detecting trace contaminants.

How Is Soda-lime Glass Manufactured, And What Are Its Applications?

Soda-lime glass is created by floating molten glass on molten tin, ensuring uniform thickness and exceptionally flat surfaces. It is widely favored as an insulating substrate for thin/thick film deposition in laboratory settings.

What Are The Advantages Of Cold Isostatic Pressing?

  • High green strength: Machining of the compacted material in its green state becomes more feasible.
  • Materials that are hard to press: Isostatic pressing can be performed on powders without the need for water, lubricants, or binders, making it applicable to a wider range of materials.
  • Predictable shrinkage during sintering is achieved due to the high compaction and uniform density.
  • Time and cost savings in post-processing are possible due to the ability to create large, complex, and near-net shapes.
  • Large aspect ratio parts with uniform density can be produced, resulting in improved quality.
  • Green strength enables efficient in-process handling and treatment, reducing production costs.

What Is A Cold Isostatic Press?

A cold isostatic press (CIP) is a machine used to compact and mold powders and other materials into a desired shape.

The process works by filling a flexible mold, usually made of rubber or plastic, with a liquid pressure medium like water, oil, or a specialized fluid. This mold is then placed in a closed container, and equal pressure is applied to each surface to achieve a high-pressure environment.

The pressure results in an increase in the product's density and allows it to take on the desired shape.

Cold isostatic pressing is performed at room temperature, in contrast to hot isostatic pressing which is carried out at higher temperatures.

How Does A Hydraulically Heated Laboratory Press Work?

A hydraulically heated laboratory press operates by combining hydraulic pressure and controlled heat to process samples. The press consists of a hydraulic system that applies pressure to the sample and a heating element that provides controlled temperature. The pressure is generated by a hydraulic pump, which pressurizes a liquid, typically oil or water, in a closed system. The pressurized liquid is then directed to a piston or platen that applies the pressure to the sample. The heating element, often in the form of heated platens or resistance heating, allows for controlled temperature application to the sample. The combination of pressure and heat allows for various processes, such as powder compaction, material synthesis, or polymer molding, depending on the specific experimental requirements.

What Considerations Should Be Taken When Selecting A Laboratory Hydraulic Machine?

When selecting a laboratory hydraulic machine, several factors should be considered. The force capacity should match the specific application and the maximum force expected. The size and configuration of the hydraulic cylinder should accommodate the sample size and shape. The machine should have precise control over the applied force, displacement, or strain, with user-friendly software or control panels. Safety features, such as emergency stop buttons and protective shields, should be evaluated. It is important to ensure that the machine is constructed from durable materials and designed for long-term use. Additionally, it is crucial to consider the availability of accessories or fixtures to hold the samples securely during testing.

What Is The Advantage Of XRF Pressed Pellet Technique?

The advantage of XRF pressed pellet technique is that it produces high-quality results with a higher signal-to-noise ratio, allowing for the detection of even the lightest elements. Quantifying the elemental composition without pressed pellets can lead to significant discrepancies between expected and actual values. The grinding of the sample into fine particles and compressing it into a smooth and flat XRF pellet reduces background scattering and improves the detection of emissions. Pressed pellets are also relatively quick, low-cost, and lend themselves to simple and cost-effective automation for higher throughput laboratories.

What Factors Should Be Considered When Selecting A Pellet Press?

Several factors should be considered when selecting a pellet press. These include the desired pellet size and shape, the material properties, the required production capacity, and the available space and resources. The type and condition of the material being processed, such as its moisture content, particle size, and flowability, can also influence the selection of the pellet press. Additionally, factors such as the power requirements, ease of operation and maintenance, and the availability of spare parts and technical support should be considered. It is important to choose a pellet press that aligns with the specific requirements and objectives of the application to ensure optimal performance and cost-effectiveness.

What Types Of Materials Can Be Pelletized Using Pellet Molds?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

What Considerations Should Be Taken When Selecting An Electric Laboratory Press?

Several factors should be considered when selecting an electric laboratory press. The required force capacity should match the specific application and the maximum force expected. The platen size should accommodate the sample size and shape. The speed range and control options should align with the desired testing or processing requirements. It is important to ensure the press is constructed from durable materials and designed for long-term use. Safety features, such as emergency stop buttons and protective shields, should be evaluated. Additionally, the availability of accessories, such as different platens or heating options, can be crucial for specific applications.

Why KBr Is Used For Pellet?

KBr (potassium bromide) is used for pellet preparation because it is a stable, transparent, and inexpensive salt that is easy to obtain in high purity. When a sample is mixed with KBr powder and compressed into a pellet using a press, it forms a flat, uniform disc with a consistent thickness. KBr pellets are commonly used in spectroscopy applications to analyze solid samples because they provide a clear and reproducible path for infrared light to pass through, which allows for accurate measurements of the sample's chemical composition.

What Makes K9 Quartz Glass Suitable For Optical Applications?

K9 glass, also known as K9 crystal, is a type of optical borosilicate crown glass renowned for its exceptional optical properties, including high clarity and precise refractive index, making it ideal for various optical applications.

Application Field Of Cold Isostatic Press?

Cold Isostatic Pressing is widely used for various applications, including the consolidation of ceramic powders, compression of graphite, refractory materials, and electrical insulators, as well as the production of fine ceramics for dental and medical applications.

This technology is also making inroads into new fields such as pressing sputtering targets, coating valve parts in engines to reduce wear on cylinder heads, telecommunications, electronics, aerospace, and automotive industries.

How Can The Performance Of A Hydraulically Heated Laboratory Press Be Optimized?

The performance of a hydraulically heated laboratory press can be optimized through several means. Regular maintenance is crucial to ensure the machine operates smoothly and accurately. This includes checking and lubricating hydraulic components, inspecting heating elements for wear or damage, and calibrating pressure and temperature sensors as necessary. It is important to follow the manufacturer's guidelines for proper usage and maintenance. Calibration of the pressure and temperature controls should be conducted periodically to ensure accurate and reliable results. Selection of appropriate fixtures or molds for sample preparation is important to ensure uniform pressure application. Collaborating with manufacturers or experts in laboratory press technology can provide valuable guidance and recommendations for optimizing the performance of a hydraulically heated laboratory press.

How Can One Select The Appropriate Pellet Mold For Their Specific Application?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

How To Make KBr Pellets For FTIR?

To make KBr pellets for FTIR, a pellet press die set, pestle and mortar, and IR-transparent medium, such as KBr, are required. The KBr and sample are mixed in a mortar, and the resulting mixture is pressed into a disc using a die set and a hydraulic press. The pellet should be thin, transparent, and contain only a small amount of the sample. The typical ratio of KBr to sample is 100:1. KBr is hygroscopic, so it should be stored in a dry environment and prepared in a glovebox or with a vacuum die to avoid moisture absorption.

What Are The Benefits Of Using PTFE Measuring Cylinders In Laboratories?

PTFE cylinders are chemically inert over a wide temperature range (up to 260º C), have excellent corrosion resistance, and maintain a low coefficient of friction, ensuring ease of use and cleaning. They are a rugged alternative to traditional glass cylinders.

What Are The Wearing Parts Of Cold Isostatic Pressing Equipment?

The wearing parts of cold isostatic equipment are mainly various seals, such as various types of seal rings, valve cores and valve seats.

Why Is Glass A Preferred Material For Laboratory Equipment?

Glass has a smooth surface that offers an excellent view of what is going on inside the equipment, enhancing the efficiency of inspection in each process. It is also clear and provides good optical properties, making it a preferred material for laboratory equipment.

Do You Provide Matching Cold Isostatic Press Molds?

We offer a variety of standard mold shapes for customers to experiment or validate their process. Custom mold design services are also available upon request.

View more faqs for this product

4.9

out of

5

This hydraulic press is an excellent choice for lab applications. It's simple to operate and provides precise pressure control, ensuring consistent and repeatable results.

Syeda Laraib

4.8

out of

5

The manual hydraulic pellet press is a valuable addition to our lab. It's easy to use and delivers accurate results, making it an essential tool for sample preparation.

Dr. Abdul Rafay

4.7

out of

5

The hydraulic press is a reliable and durable piece of equipment. We've been using it for several years without any issues, and it continues to perform flawlessly.

Prof. Maha Al-Qahtani

4.8

out of

5

The manual hydraulic pellet press is an excellent investment for any lab. It's affordable, easy to use, and produces high-quality results.

Dr. Rajeev Sharma

4.9

out of

5

We've been using the hydraulic press for over a year now, and it's been an invaluable tool in our research. It's easy to operate and provides precise pressure control, which is crucial for our experiments.

Mr. Paulo Ferreira

4.7

out of

5

The hydraulic press is a great addition to our lab. It's compact and easy to use, and it produces consistent results. We're very happy with our purchase.

Ms. Amina Johnson

4.8

out of

5

The hydraulic press is a great choice for labs with limited space. It's small and lightweight, yet it still delivers powerful and precise pressing.

Dr. Ahmed Hassan

4.7

out of

5

We recently purchased the hydraulic press for our lab, and we're very impressed with its performance. It's easy to use and maintain, and it produces high-quality results.

Mr. Carlos Garcia

4.9

out of

5

The hydraulic press is a must-have for any lab that needs to prepare samples for analysis. It's easy to operate and provides consistent and accurate results.

Dr. Maria Rodriguez

4.8

out of

5

The hydraulic press is a great investment for any lab. It's durable, reliable, and produces high-quality results. We're very happy with our purchase.

Mr. Park Ji-hoon

4.7

out of

5

The hydraulic press is a valuable addition to our lab. It's easy to use and provides precise pressure control, making it ideal for a variety of applications.

Dr. Sarah Jones

4.9

out of

5

The hydraulic press is a great choice for labs that need a reliable and affordable solution for sample preparation. It's easy to use and produces consistent results.

Mr. Kim Young-jae

PDF - Manual Lab Hydraulic Pellet Press 12T / 15T / 24T / 30T / 40T

Download

Catalog of Manual Lab Press

Download

Catalog of Hydraulic Heated Lab Press

Download

Catalog of Manual Lab Press

Download

Catalog of Lab Hydraulic Press

Download

Catalog of Lab Press

Download

Catalog of Xrf Pellet Press

Download

Catalog of Pellet Press

Download

Catalog of Pellet Dies

Download

Catalog of Electric Lab Press

Download

Catalog of Kbr Pellet Press

Download

Catalog of Glass Material

Download

Catalog of Cold Isostatic Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Efficient Manure Lab Hydraulic Press with Safety Cover for sample preparation in material research, pharmacy, and electronic industries. Available in 15T to 60T.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Electric Hydraulic Pellet Press for XRF & KBR 20T / 30T / 40T / 60T

Efficiently prepare samples with the Electric Hydraulic Press. Compact and portable, it's perfect for labs and can work in a vacuum environment.

lab pellet press for vacuum box

lab pellet press for vacuum box

Enhance your lab's precision with our lab press for vacuum box. Press pills and powders with ease and precision in a vacuum environment, reducing oxidation and improving consistency. Compact and easy to use with a digital pressure gauge.

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Split electric laboratory pellet press 40T / 65T / 100T / 150T / 200T

Efficiently prepare samples with a split electric lab press - available in various sizes and ideal for material research, pharmacy, and ceramics. Enjoy greater versatility and higher pressure with this portable and programmable option.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Automatic Lab Pellet Press Machine 20T / 30T / 40T / 60T / 100T

Experience efficient sample preparation with our Automatic Lab Press Machine. Ideal for material research, pharmacy, ceramics, and more. Features a compact size and hydraulic press functionality with heating plates. Available in various sizes.

Thin-layer spectral electrolysis cell

Thin-layer spectral electrolysis cell

Discover the benefits of our thin-layer spectral electrolysis cell. Corrosion-resistant, complete specifications, and customizable for your needs.

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Hydraulic Diaphragm Lab Filter Press

Hydraulic Diaphragm Lab Filter Press

Hydraulic diaphragm lab press filter is one type lab scale filter press, it takes small footprint, and higher pressing power.

water bath electrolytic cell - H-type double-layer optical

water bath electrolytic cell - H-type double-layer optical

Double-layer H-type optical water bath electrolytic cells, with excellent corrosion resistance and a wide range of specifications available. Customization options are also available.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Manual Lab Pellet Press For Vacuum Box

Manual Lab Pellet Press For Vacuum Box

The lab press for vacuum box is a specialized piece of equipment designed for laboratory use. Its main purpose is to press pills and powders according to specific requirements.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Split chamber CVD tube furnace with vacuum station CVD machine

Split chamber CVD tube furnace with vacuum station CVD machine

Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Optical water bath electrolytic cell

Optical water bath electrolytic cell

Upgrade your electrolytic experiments with our Optical Water Bath. With controllable temperature and excellent corrosion resistance, it's customizable for your specific needs. Discover our complete specifications today.

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Automatic Lab Cold Isostatic Press (CIP) 300MPA-400MPA-500MPA

Efficiently prepare samples with our Automatic Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Provides greater flexibility and control compared to electric CIPs.

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Automatic Lab XRF & KBR Pellet Press 30T / 40T / 60T

Fast and easy xrf sample pellet preparation with KinTek Automatic Lab Pellet Press. Versatile and accurate results for X-ray fluorescence analysis.

Double-layer water bath electrolytic cell

Double-layer water bath electrolytic cell

Discover the temperature-controllable electrolytic cell with a double-layer water bath, corrosion resistance, and customization options. Complete specifications included.

2L Short Path Distillation

2L Short Path Distillation

Extract and purify with ease using our 2L short path distillation kit. Our heavy-duty Borosilicate glassware, fast heating mantle, and delicate fitting device ensure efficient and high-quality distillation. Discover the advantages today!

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Stainless High Pressure Reactor

Stainless High Pressure Reactor

Discover the versatility of Stainless High Pressure Reactor - a safe and reliable solution for direct and indirect heating. Built with stainless steel, it can withstand high temperatures and pressures. Learn more now.

Manual Lab Heat Press

Manual Lab Heat Press

Manual hydraulic presses are mainly used in laboratories for various applications such as forging, molding, stamping, riveting and other operations. It allows the creation of complex shapes while saving material.

Cold isostatic press for small workpiece production 400Mpa

Cold isostatic press for small workpiece production 400Mpa

Produce uniformly high-density materials with our Cold Isostatic Press. Ideal for compacting small workpieces in production settings. Widely used in powder metallurgy, ceramics, and biopharmaceutical fields for high-pressure sterilization and protein activation.

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure (Digital display automatic type)

Portable autoclave sterilization pressure is a device that uses pressure saturated steam to quickly and effectively sterilize items.

Multi heating zones CVD tube furnace CVD machine

Multi heating zones CVD tube furnace CVD machine

KT-CTF14 Multi Heating Zones CVD Furnace - Precise Temperature Control and Gas Flow for Advanced Applications. Max temp up to 1200℃, 4 channels MFC mass flow meter, and 7" TFT touch screen controller.

Lab pellet press machine for glove box

Lab pellet press machine for glove box

Controlled environment lab press machine for glove box. Specialized equipment for material pressing and shaping with high precision digital pressure gauge.

High pressure tube furnace

High pressure tube furnace

KT-PTF High Pressure Tube Furnace: Compact split tube furnace with strong positive pressure resistance. Working temp up to 1100°C and pressure up to 15Mpa. Also works under controller atmosphere or high vacuum.

Related Articles

Manual Hydraulic Presses for Laboratory Use: A Comprehensive Guide

Manual Hydraulic Presses for Laboratory Use: A Comprehensive Guide

Explore the intricacies of manual hydraulic presses in labs, including operation, benefits, and comparison with automatic models. Ideal for those seeking detailed insights on sample preparation and cost-effectiveness.

Find out more
Manual Lab Hydraulic Pellet Press: Comprehensive Guide to High-Quality Pellet Preparation

Manual Lab Hydraulic Pellet Press: Comprehensive Guide to High-Quality Pellet Preparation

Explore the detailed guide on using a Manual Lab Hydraulic Pellet Press for high-quality pellet preparation in spectral analyses. Learn about features, operation, and maintenance for optimal performance.

Find out more
Comprehensive Guide to Manual Hydraulic Pellet Press

Comprehensive Guide to Manual Hydraulic Pellet Press

A manual hydraulic pellet press is a valuable tool in the laboratory for preparing pellets with a smooth and homogeneous surface for spectral analyses. It is commonly used in applications such as X-ray fluorescence analysis or infrared spectroscopy for elemental analysis.

Find out more
Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

Manual Hydraulic Pellet Press: An Efficient Tool for Spectral Analyses Preparation

The manual hydraulic pellet press offers several key features that make it a valuable tool for laboratory applications. Some of the main features include:Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Availability of pressing tools in different diameters: 40mm, 32mm, and 15mm;Designed pressure force display in 10 kN steps;Ease of operation via hand lever;Convenience in cleaning;Single-stage piston stroke of maximum 25mm ect.

Find out more
Understanding Hydraulic Pellet Press: Working Mechanism and Applications

Understanding Hydraulic Pellet Press: Working Mechanism and Applications

A hydraulic press, also known as a Bramah press, is a machine that uses fluid pressure to generate a force. This force can be used to compress or mold materials. Hydraulic presses are commonly used in manufacturing and industrial applications due to their ability to exert a large amount of force while still being easy to operate.

Find out more
Automatic Hydraulic Press: The Ultimate Guide for Efficient Sample Preparation and Industrial Processes

Automatic Hydraulic Press: The Ultimate Guide for Efficient Sample Preparation and Industrial Processes

Discover the world of automatic hydraulic presses, from their versatile applications in industrial XRF and laboratory sample manipulation to their role in large-scale manufacturing, hot embossing, laminating, and polymer melting. Learn about their benefits, features, and how they revolutionize sample preparation and industrial processes.

Find out more
Operating of Automatic Lab xrf Pellet Press

Operating of Automatic Lab xrf Pellet Press

How to use the Automatic Lab xrf Pellet Press, including steel ring, plastic ring, boric acid mold

Find out more
Applications and Importance of Hydraulic Press in Laboratories

Applications and Importance of Hydraulic Press in Laboratories

A hydraulic press is a machine that uses the pressure generated in a confined fluid to configure metals, plastics, rubber, and other materials. Its operation is governed by Pascal’s principle, which states that pressure applied to a confined fluid is transmitted unaltered throughout the fluid.

Find out more
A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

XRF (X-ray fluorescence) analysis is a powerful technique used in various industries for material analysis. One crucial step in the XRF analysis process is the preparation of high-quality XRF pellets. These pellets serve as the sample for analysis and need to be properly pressed to ensure accurate results.

Find out more
Understanding the Functioning and Applications of a Hydraulic Pellet Press

Understanding the Functioning and Applications of a Hydraulic Pellet Press

A hydraulic press is a compression device that makes use of an exerted force placed upon a fluid, to create a resulting force according to Pascal’s Law. It was actually invented by Joseph Bramah, so is also known as the Bramah Press.

Find out more
What is lab hydraulic press

What is lab hydraulic press

A lab hydraulic press is a machine that uses a fluid to generate a force. The force is generated by a piston that is moved by the fluid. The fluid can be water, oil, or a synthetic fluid. The force generated by the press can be used to compress a variety of materials.

Find out more
Hydraulic Presses vs. Mechanical Presses Which is Right for Your Laboratory

Hydraulic Presses vs. Mechanical Presses Which is Right for Your Laboratory

Hydraulic and mechanical presses are two commonly used types of presses, each with its own set of advantages and disadvantages. Hydraulic presses use hydraulic cylinders to apply force, while mechanical presses use a mechanical lever or cam to apply force.

Find out more