Products Sample Preparation Customer-made Press Manual high temperature heat press
Manual high temperature heat press

Customer-made Press

Manual high temperature heat press

Item Number : PCHT

Price varies based on specs and customizations


Pressure process
Manual pressurization
Pressure holding time
1 second ~ ∞ seconds
Cylinder stroke
80mm
Heating temperature
Maximum 1000℃
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Introduction

The High Temperature Hot Press is a machine specifically designed for pressing, sintering and processing materials in a high temperature environment. It is capable of operating in the range of hundreds of degrees Celsius to thousands of degrees Celsius for a variety of high temperature process requirements. Manual intervention is required to regulate and control pressure, temperature and other parameters during operation.

Applications

High temperature hot presses are widely used in the following areas:

High-temperature alloy manufacturing: used to manufacture aero-engine components, spacecraft materials, etc.

Powder metallurgy: used for manufacturing precision parts and metal products with complex structure.

Ceramic materials: used for sintering and processing of high temperature ceramics.

Electronic materials: for manufacturing semiconductor materials and magnetic materials.

Detail&part

Manual high temperature heat press

Setting interface
Setting interface
Operation interface
Operation interface
  • Step 1: Select the data screen and enter the setting interface
  • Step 2: Select "Programmable segment setting"
  • Step 3: There are 20 temperature rise control programs in the program, select the first segment
  • Step 4: According to the experimental requirements, set the temperature and heating speed of the first segment
  • Step 5: If multiple temperature rise programs are required, you can set the 20 segments
  • Step 6: After setting, press the main interface to return to the operation interface
  • Step 7: On the main interface, press "Heating Start".
  • Step 8: The equipment starts to heat up according to the program.
  • Step 9: The equipment stops automatically after heating. If the setting is wrong, such as the set temperature is not reached within the specified time, the equipment will automatically terminate.

Principle

High-temperature hot presses utilize the physical and chemical effects of high-temperature and high-pressure environments to press, sinter, and process materials by applying high pressure and temperature to the materials, prompting the rearrangement or crystallization of the material molecules. Under high temperature conditions, the material atoms can cross the energy barriers more easily, which is conducive to chemical reactions, grain growth and material densification, and thus improve the mechanical properties and heat resistance of the materials, as well as the manufacture of complex structural materials.

Feature

High-temperature operating capability: Capable of stable operation at extremely high temperatures, up to thousands of degrees Celsius.

Precise control: Equipped with precise temperature control and pressure control systems to ensure accurate and repeatable processing.

Adaptation to diverse materials: capable of handling various types of materials, including metals, ceramics, composites, etc.

High performance: equipment design and process optimization allow for high productivity and the ability to produce high quality products in large quantities.

Technical specifications

Instrument model PCHT
Pressure range 0-5.0 tons
Pressure process Manual pressurization
Pressure holding time 1 second ~ ∞ seconds
Cylinder stroke 80mm
Heating temperature Maximum 1000℃
Mold material Nickel-based alloy (high temperature resistant material)
Sample size Medium 10-30mm
Mold shape Medium 50x90mm
Furnace diameter Medium 60mm
Complete machine size 400x380x780 (LxWxH)
Power supply 220V 50Hz
Powder tablet press size diagram Powder tablet press size diagram

Operation steps

1.Place the sample into the mold

1.Place the sample into the mold.

2.Put the mold into the hot press.

2.Put the mold into the hot press.

Pre-press the sample.

3.Pre-press the sample.

4.Click on the data screen to set the heating temperature.

4.Click on the data screen to set the heating temperature.

5.In the data screen, up to 20 heating programs can be set, and the heating speed can be adjusted.

5.In the data screen, up to 20 heating programs can be set, and the heating speed can be adjusted.

6.Return to the main interface and start heating.

6.Return to the main interface and start heating.

7.When the temperature reaches the set temperature, start pressurization.

7.When the temperature reaches the set temperature, start pressurization.

8.Take out the sample.

8.Return to the main interface and start heating.

FAQ

What is a lab press?

A lab press, also known as a laboratory press, is a machine used to create compressed pellets from powdered material for various applications such as pharmaceutical development, spectroscopy, and bomb calorimetry. The powders are placed into a die and are pressed into shape by hydraulic action. Lab presses can have a wide range of pressures, from 15 to 200 metric tons, and can accommodate a wide range of different-sized or customized dies. They are commonly used in industries such as pharmaceutical, laminating, rubber and plastic molding, and for R&D work, testing, short runs, limited production, cell manufacturing, and lean manufacturing.

What are the advantages of using a hydraulically heated laboratory press?

Hydraulically heated laboratory presses offer several advantages in scientific research and material characterization. The hydraulic system provides precise and adjustable pressure control, allowing researchers to apply specific pressure levels to samples. The inclusion of a heating element enables precise temperature control, facilitating experiments that require elevated temperatures or thermal treatments. The presses are also versatile and can accommodate a wide range of sample sizes and shapes. They are commonly used for applications such as powder compaction, material synthesis, sample preparation for spectroscopic analysis, and polymer molding. The combination of pressure and heat in a single machine streamlines experimental processes and offers researchers greater control over their experimental conditions.

What is the purpose of a hydraulic press in lab?

A hydraulic press in the laboratory is used to test the strength and durability of materials, investigate the effects of high pressure on different substances, and create pellets for sample analysis. It is a machine that uses fluid pressure to generate a force, which can be used to compress or mold materials. Laboratory hydraulic presses are smaller versions of industrial machines that offer more precision and control. They are commonly used to create KBr pellets for FTIR and general sample pellets for XRF in order to study the elemental composition of materials.

What does a hydraulic lab heat press do?

A hydraulic lab heat press is a machine that uses fluid pressure to generate force and heat to melt powdered material and compress it into the desired shape and size for lab applications. It is used to create a wide range of samples, pellets, and test specimens for materials such as polymers, composites, ceramics, and pharmaceuticals. The lab press can be a benchtop or floor unit and can generate from 15 to over 200 tons of compressive force. It has heated platens that can range from 50℃ to 500℃.

What are different type of lab presses?

Different types of laboratory presses include manual hydraulic presses, automated hydraulic presses. Manual hydraulic presses use hand-operated levers to apply pressure, while automated presses are equipped with programmable controls to press products more accurately and consistently. When selecting a hydraulic press, it is important to consider the amount of force needed for a specific sample, how much space is provided in the lab, and how much energy and strength is required to pump the press.

What types of samples or materials can be processed in a hydraulically heated laboratory press?

Hydraulically heated laboratory presses can process a wide range of samples and materials. They are commonly used for powders, granules, pellets, and other solid forms. The presses are particularly useful for compacting powders into tablets or pellets for subsequent analysis or material characterization. They can also be used for synthesizing materials through processes such as hot pressing or sintering. In addition, the presses can handle materials such as polymers or composites, allowing for molding or shaping experiments. The versatility of hydraulically heated laboratory presses makes them suitable for various applications in materials science, chemistry, geology, and other scientific disciplines.

How does a hydraulically heated laboratory press work?

A hydraulically heated laboratory press operates by combining hydraulic pressure and controlled heat to process samples. The press consists of a hydraulic system that applies pressure to the sample and a heating element that provides controlled temperature. The pressure is generated by a hydraulic pump, which pressurizes a liquid, typically oil or water, in a closed system. The pressurized liquid is then directed to a piston or platen that applies the pressure to the sample. The heating element, often in the form of heated platens or resistance heating, allows for controlled temperature application to the sample. The combination of pressure and heat allows for various processes, such as powder compaction, material synthesis, or polymer molding, depending on the specific experimental requirements.

How can the performance of a hydraulically heated laboratory press be optimized?

The performance of a hydraulically heated laboratory press can be optimized through several means. Regular maintenance is crucial to ensure the machine operates smoothly and accurately. This includes checking and lubricating hydraulic components, inspecting heating elements for wear or damage, and calibrating pressure and temperature sensors as necessary. It is important to follow the manufacturer's guidelines for proper usage and maintenance. Calibration of the pressure and temperature controls should be conducted periodically to ensure accurate and reliable results. Selection of appropriate fixtures or molds for sample preparation is important to ensure uniform pressure application. Collaborating with manufacturers or experts in laboratory press technology can provide valuable guidance and recommendations for optimizing the performance of a hydraulically heated laboratory press.
View more faqs for this product

4.7

out of

5

Incredible precision and control, perfect for our lab's needs!

Hiroshi Tanaka

4.8

out of

5

Fast delivery and top-notch quality, highly recommend!

Anika Patel

4.9

out of

5

Durable and reliable, a game-changer for our projects.

Sofia Rossi

4.7

out of

5

Value for money, exceptional performance and durability.

Liam O'Brien

4.8

out of

5

Technologically advanced, simplifies our complex processes.

Elena Garcia

4.9

out of

5

Ergonomic design and user-friendly, a breeze to operate.

Mohammed Al-Farsi

4.7

out of

5

Highly satisfied with the speed and efficiency of this press.

Chen Wei

4.8

out of

5

Excellent build quality, stands up to rigorous lab use.

Olga Ivanova

4.9

out of

5

Innovative features make this a must-have for any lab.

Lucas Müller

4.7

out of

5

Quick setup and easy operation, saves us time daily.

Amina El-Hajj

4.8

out of

5

Robust and efficient, handles high-temp jobs flawlessly.

Carlos Silva

4.9

out of

5

Outstanding customer service and product support.

Yuki Nakamura

4.7

out of

5

Impressive durability, a key asset for our lab operations.

Emma Johnson

4.8

out of

5

Highly precise, critical for our sensitive material experiments.

Nikolai Petrov

4.9

out of

5

Exceptional value, enhances our lab's productivity significantly.

Fatima Al-Mansoori

4.7

out of

5

Reliable and consistent, a staple in our lab equipment.

David Smith

4.8

out of

5

Advanced technology at an affordable price, couldn't be happier.

Maria Gonzales

PDF - Manual high temperature heat press

Download

Catalog of Customer-Made Press

Download

Catalog of Hydraulic Heated Lab Press

Download

Catalog of Lab Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

Automatic High-Temp Heat Press

Automatic High-Temp Heat Press

The Automatic High Temperature Heat Press is a sophisticated hydraulic hot press designed for efficient temperature control and product quality processing.

Manual  heat press High temperature hot pressing

Manual heat press High temperature hot pressing

The Manual Heat Press is a versatile piece of equipment suitable for a variety of applications, operated by a manual hydraulic system that applies controlled pressure and heat to the material placed on the piston.

automatic heated lab pellet press 25T / 30T / 50T

automatic heated lab pellet press 25T / 30T / 50T

Efficiently prepare your samples with our Automatic Heated Lab Press. With a pressure range up to 50T and precise control, it's perfect for various industries.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

Alumina (Al2O3) Furnace Tube - High Temperature

Alumina (Al2O3) Furnace Tube - High Temperature

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

Split manual heated lab pellet press 30T / 40T

Split manual heated lab pellet press 30T / 40T

Efficiently prepare your samples with our Split Manual Heated Lab Press. With a pressure range up to 40T and heating plates up to 300°C, it's perfect for various industries.

600T vacuum induction hot press furnace

600T vacuum induction hot press furnace

Discover the 600T Vacuum Induction Hot Press Furnace, designed for high-temperature sintering experiments in vacuum or protected atmospheres. Its precise temperature and pressure control, adjustable working pressure, and advanced safety features make it ideal for nonmetal materials, carbon composites, ceramics, and metal powders.

Electric Vacuum Heat Press

Electric Vacuum Heat Press

The Electric Vacuum Heat Press is a specialized heat press equipment that operates in a vacuum environment, utilizing advanced infrared heating and precise temperature control for high quality, rugged and reliable performance.

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

Alumina (Al2O3) Plate-High Temperature and Wear-Resistant Insulating

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.

Vacuum tube hot press furnace

Vacuum tube hot press furnace

Reduce forming pressure & shorten sintering time with Vacuum Tube Hot Press Furnace for high-density, fine-grain materials. Ideal for refractory metals.

Split automatic heated lab pellet press 30T / 40T

Split automatic heated lab pellet press 30T / 40T

Discover our split automatic heated lab press 30T/40T for precise sample preparation in material research, pharmacy, ceramics, and electronics industries. With a small footprint and heating up to 300°C, it's perfect for processing under vacuum environment.

Boron Nitride (BN) Ceramics-Conductive Composite

Boron Nitride (BN) Ceramics-Conductive Composite

Due to the characteristics of boron nitride itself, the dielectric constant and dielectric loss are very small, so it is an ideal electrical insulating material.

Vacuum hot press furnace

Vacuum hot press furnace

Discover the advantages of Vacuum Hot Press Furnace! Manufacture dense refractory metals & compounds, ceramics, and composites under high temp and pressure.

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Hydraulic Heated Lab Pellet Press 24T / 30T / 60T

Looking for a reliable Hydraulic Heated Lab Press? Our 24T / 40T model is perfect for material research labs, pharmacy, ceramics, and more. With a small footprint and the ability to work inside a vacuum glove box, it's the efficient and versatile solution for your sample preparation needs.

Alumina (Al2O3) Ceramic Rod-Insulated

Alumina (Al2O3) Ceramic Rod-Insulated

Insulated alumina rod is a fine ceramic material. Alumina rods have excellent electrical insulating properties, high chemical resistance and low thermal expansion.

Boron Nitride (BN) Ceramic Tube

Boron Nitride (BN) Ceramic Tube

Boron nitride (BN) is known for its high thermal stability, excellent electrical insulating properties and lubricating properties.

Manual Lab Pellet Press For Vacuum Box

Manual Lab Pellet Press For Vacuum Box

The lab press for vacuum box is a specialized piece of equipment designed for laboratory use. Its main purpose is to press pills and powders according to specific requirements.

High temperature debinding and pre sintering furnace

High temperature debinding and pre sintering furnace

KT-MD High temperature debinding and pre-sintering furnace for ceramic materials with various molding processes. Ideal for electronic components such as MLCC and NFC.

Cylindrical Lab electric heating Press Mold

Cylindrical Lab electric heating Press Mold

Efficiently prepare samples with Cylindrical Lab Electric Heating Press Mold. Fast heating, high temp & easy operation. Custom sizes available. Perfect for battery, ceramic & biochemical research.

Boron Nitride (BN) Ceramic Parts

Boron Nitride (BN) Ceramic Parts

Boron nitride ((BN) is a compound with high melting point, high hardness, high thermal conductivity and high electrical resistivity. Its crystal structure is similar to graphene and harder than diamond.

High Energy Vibratory Ball Mill

High Energy Vibratory Ball Mill

The high-energy vibrating ball mill is a high-energy oscillating and impacting multifunctional laboratory ball mill. The table-top type is easy to operate, small in size, comfortable and safe.

Hexagonal Boron Nitride (HBN) Ceramic Ring

Hexagonal Boron Nitride (HBN) Ceramic Ring

Boron nitride ceramic (BN) rings are commonly used in high temperature applications such as furnace fixtures, heat exchangers and semiconductor processing.

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Manual Lab Hydraulic Pellet Press With Safety Cover 15T / 24T / 30T / 40T / 60T

Efficient Manure Lab Hydraulic Press with Safety Cover for sample preparation in material research, pharmacy, and electronic industries. Available in 15T to 60T.

9MPa air pressure sintering furnace

9MPa air pressure sintering furnace

The air pressure sintering furnace is a high-tech equipment commonly used for the sintering of advanced ceramic materials. It combines vacuum sintering and pressure sintering techniques to achieve high-density and high-strength ceramics.

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina Zirconia Special-Shaped Parts Processing Custom-Made Ceramic Plates

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

Double plate heating mold

Double plate heating mold

Discover precision in heating with our Double Plate Heating Mold, featuring high-quality steel and uniform temperature control for efficient lab processes. Ideal for various thermal applications.

Boron Nitride (BN) Ceramic Plate

Boron Nitride (BN) Ceramic Plate

Boron nitride (BN) ceramic plates do not use aluminum water to wet, and can provide comprehensive protection for the surface of materials that directly contact molten aluminum, magnesium, zinc alloys and their slag.

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum Nitride (AlN) Ceramic Sheet

Aluminum nitride (AlN) has the characteristics of good compatibility with silicon. It is not only used as a sintering aid or reinforcing phase for structural ceramics, but its performance far exceeds that of alumina.

1700℃ Muffle furnace

1700℃ Muffle furnace

Get superior heat control with our 1700℃ Muffle Furnace. Equipped with intelligent temperature microprocessor, TFT touch screen controller & advanced insulation materials for precise heating up to 1700C. Order now!

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon Nitride (SiN) Ceramic Sheet Precision Machining Ceramic

Silicon nitride plate is a commonly used ceramic material in the metallurgical industry due to its uniform performance at high temperatures.

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

Aluminum Oxide (Al2O3) Ceramics Heat Sink - Insulation

The hole structure of the ceramic heat sink increases the heat dissipation area in contact with the air, which greatly enhances the heat dissipation effect, and the heat dissipation effect is better than that of super copper and aluminum.

Split multi heating zone rotary tube furnace

Split multi heating zone rotary tube furnace

Multi zone rotary furnace for high-precision temperature control with 2-8 independent heating zones. Ideal for lithium ion battery electrode materials and high-temperature reactions. Can work under vacuum and controlled atmosphere.

Split chamber CVD tube furnace with vacuum station CVD machine

Split chamber CVD tube furnace with vacuum station CVD machine

Efficient split chamber CVD furnace with vacuum station for intuitive sample checking and quick cooling. Up to 1200℃ max temperature with accurate MFC mass flowmeter control.

Related Articles

High Pressure Tube Furnace: Applications, Safety, and Maintenance

High Pressure Tube Furnace: Applications, Safety, and Maintenance

Explore the advanced applications, safety measures, and maintenance tips for high pressure tube furnaces. Learn how these furnaces are used in various high-temperature processes and ensure optimal performance and safety.

Find out more
Exploring the Capabilities and Applications of Warm Isostatic Pressing (WIP)

Exploring the Capabilities and Applications of Warm Isostatic Pressing (WIP)

Dive into the comprehensive guide on Warm Isostatic Pressing (WIP), its technology, applications, and benefits in material processing. Discover how WIP enhances material properties and its role in advanced manufacturing.

Find out more
Optimizing Laboratory Analysis with Split Automatic Heated Lab Pellet Press

Optimizing Laboratory Analysis with Split Automatic Heated Lab Pellet Press

Explore the advanced features and benefits of split automatic heated lab pellet presses for precise pellet preparation in various analytical applications. Ideal for high-throughput laboratories.

Find out more
Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Comprehensive Guide to Spark Plasma Sintering Furnaces: Applications, Features, and Benefits

Explore the advanced features and applications of Spark Plasma Sintering Furnaces (SPS) in material science. Learn how SPS technology offers rapid, efficient, and versatile sintering for various materials.

Find out more
Manual Lab Hydraulic Pellet Press: Comprehensive Guide to High-Quality Pellet Preparation

Manual Lab Hydraulic Pellet Press: Comprehensive Guide to High-Quality Pellet Preparation

Explore the detailed guide on using a Manual Lab Hydraulic Pellet Press for high-quality pellet preparation in spectral analyses. Learn about features, operation, and maintenance for optimal performance.

Find out more