Products Sample Preparation Molds & Accessories No demolding lab infrared press mold
No demolding lab infrared press mold

Molds & Accessories

No demolding lab infrared press mold

Item Number : PMI

Price varies based on specs and customizations


Material
Carbide YT15
Sample size
φ7-φ13 mm
Cavity depth
5-10 mm
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

After the no demolding lab infrared mold is pressed, the sample does not need to be demolded. The sample has a good molding effect and high transmittance. It can be directly placed in the sample chamber of the infrared spectrometer for testing.

The mold is widely used in battery, superconductor, cement, ceramics, catalysis, silicate, powder metallurgy, sea mud analysis, biochemical analysis and new material sample preparation research and development. In addition, the product can also be used with calcium iron, infrared, X-ray fluorescence and other testing instruments.

Special sizes press molds can be customized according to customer requirements.

Detail & Parts

No demolding lab infrared mold PMI-A
PMI-A
Sample preparation process and demolding process
PMI-A Sample preparation process and demolding process
No demolding lab infrared mold PMI-B
PMI-B
Sample preparation process and demolding process
PMI-B Sample preparation process and demolding process

Technical specifications

Instrument model PMI-A PMI-B
Sample shape
Die material Tungsten carbide
Indenter hardness HRC68-HRC85
Sample size Φ13 mm(M) Φ7 mm(M)
Cavity depth 10mm(N) 5mm(N)
Dimensions Φ76*50*70mm(L*W*H) Φ76*30*70mm(L*W*H)
Weight 0.76Kg 0.35Kg
Diagram of hydraulic powder press size

Operation steps

Infrared non-return mold pressing sample molding without demoulding, sample molding effect is good, high transmittance, directly placed in the infrared spectrometer sample bin for testing.

Step 1: Assemble the Mold.

Step 1: Assemble the die according to the operation diagram and install the sample in the cavity.

Step 2: Pressurize the Mold.

Step 2: Put the die in the center of the hydraulic press and pressurize to required pressure.

Step 3: Eject the Sample.

Step 3:Assemble the die according to the release diagram ,eject the sample out of the die bushing with the screw rod.

Step 4: Remove the Mold and Sample.

Step 4: Take out the die from the hydraulic press , and remove the sample gently.

Precautions for mold maintenance

To ensure accurate test results, clean the mold surface with dust-free paper before each use to avoid the anti-rust oil from affecting the sample. Avoid exceeding the maximum pressure when applying pressure. Clean the mold and samples after use to prevent corrosion. Apply anti-rust oil and store the mold in a dry environment if not used for a long time to prevent damage.

Step 1: Placing the Mold.

Step 1: Placing the Mold.

To begin, place the mold in the center of the tablet press. It is important to note that the maximum pressure of the mold cannot be exceeded when pressurized. This will prevent any damage to the mold and ensure accurate test results.

Step 2: Cleaning the Mold.

Step 2: Cleaning the Mold.

After each use, it is essential to clean the mold to prevent any contamination of the sample. Using dust-free paper, wipe the surface of the mold clean. If there are sample residues on the surface that cannot be removed, please do not use chemical reagents to clean and soak. This could potentially damage the mold and impact the accuracy of the test results.

Step 3: Applying Anti-Rust Oil.

Step 3: Applying Anti-Rust Oil.

If the mold is not used for an extended period, it is recommended to apply anti-rust oil on the surface of the mold to prevent rusting. This step will help prolong the life of the mold and ensure that it remains in good condition for future use.

Step 4: Storing the Mold.

Step 4: Storing the Mold.

Lastly, if the mold is not used for a long time, it needs to be stored in a dry environment. This will prevent any moisture from accumulating on the mold and causing damage.

Full range of lab press types

Full range of lab press types

Click to view our full range of lab press products.

Any question? Our experts have helped many laboratories choose their lab press, contact us now!

Full range of types of laboratory press molds

We have a full range of molds for you to choose from, and the molds fit the body perfectly.

If you need molds with special shapes, we can also customize them for you.

laboratory press mold

Click to see all press molds.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is A Press Mold?

A press mold is a device used in material processing methods such as cold isostatic pressing (CIP) and metal mold pressing to create molded bodies from powder materials. In CIP, the mold containing the powder is immersed in a pressure medium, and isostatic pressure is applied to the outer surfaces of the mold to compress the powder into a shape. Metal mold pressing applies only uniaxial pressure to the powder material to create molded bodies. CIP can produce products with uniform density and homogeneity due to no frictions with a metal mold.

What Is Press Mould In Ceramics?

Press moulding is a ceramic forming technique that involves the compaction of powders by applying either a rigid or flexible pressure. It can be either uniaxial or isostatic, depending on the shape required. Isostatic pressing is used for shapes that cannot be obtained by uniaxial pressing or for added value products that require high density and isotropic green bodies. The molds for axial-pressing are usually made of steel, while those for isostatic pressing are made of elastomers, silicone, and polyurethanes. This technology is applied in various fields like ceramics, MMC, CMC, and Silicon nitride for cutting tools, components of heavy-duty valves, wear parts for process technology, and more.

How Are Pellet Molds Used?

To use a pellet mold, the powdered or granular material is first loaded into the mold cavity. The material is then compacted by applying pressure using a laboratory press or hydraulic machine. The pressure causes the material to conform to the shape of the mold, resulting in a solid pellet or cylindrical sample. After the compaction process, the pellet is removed from the mold and can be further processed or analyzed as needed.

What Types Of Materials Can Be Pelletized Using Pellet Molds?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

How Can One Select The Appropriate Pellet Mold For Their Specific Application?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.
View more faqs for this product

4.9

out of

5

The non-demolding design of this infrared mold is a game-changer! It saves me so much time and effort in sample preparation.

Shirleen K. Batz

4.8

out of

5

I highly recommend this infrared mold for its exceptional build quality and durability. It's a reliable workhorse in my lab.

Aqeelah J. Nance

4.7

out of

5

The infrared mold's compact size and user-friendly design make it a perfect fit for my benchtop. It's a valuable addition to my lab equipment.

Anabel V. Mclaughlin

4.9

out of

5

The high transmittance of the samples produced by this mold is remarkable. It's an essential tool for infrared spectroscopy analysis.

Anjali A. Wolf

4.8

out of

5

This infrared mold has exceeded my expectations. It's a versatile tool that can be used with various testing instruments, making it a cost-effective investment for my lab.

Aishah N. Mcclain

4.7

out of

5

The infrared mold produces high-quality samples with minimal effort. It streamlines my sample preparation process, allowing me to focus on more critical tasks.

Estefania S. Duke

4.9

out of

5

The mold's ability to directly place samples in the infrared spectrometer chamber is a huge time-saver. It simplifies my workflow and enhances my productivity.

Alia H. Justice

4.8

out of

5

The infrared mold's compatibility with various sample types makes it a versatile tool in my laboratory. It's a valuable asset for researchers working with diverse materials.

Amina F. Bray

4.7

out of

5

I appreciate the mold's customization options. It allows me to tailor it to my specific research needs, ensuring accurate and reliable results.

Ayanna B. Watkins

4.9

out of

5

The infrared mold's innovative design minimizes the risk of cracks or damage to samples during the cooling process, ensuring the integrity of my results.

Aisha M. Mcgee

4.8

out of

5

The mold's sturdy construction and durable materials guarantee longevity and reliability in my laboratory's demanding environment.

Amina C. Mcguire

4.7

out of

5

The infrared mold's user-friendly operation and straightforward maintenance procedures make it accessible to researchers of all skill levels.

Anjali K. Mendez

4.9

out of

5

The mold's compact design and lightweight construction make it easy to maneuver and store, maximizing space utilization in my laboratory.

Aishah B. Mccall

PDF - No demolding lab infrared press mold

Download

Catalog of Molds & Accessories

Download

Catalog of Pellet Dies

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

lab infrared press mold

lab infrared press mold

Easily release samples from our lab infrared press mold for accurate testing. Ideal for battery, cement, ceramics, and other sample preparation research. Customizable sizes available.

Cylindrical Lab electric heating Press Mold

Cylindrical Lab electric heating Press Mold

Efficiently prepare samples with Cylindrical Lab Electric Heating Press Mold. Fast heating, high temp & easy operation. Custom sizes available. Perfect for battery, ceramic & biochemical research.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Manual Cold Isostatic Pellet Press (CIP) 12T / 20T / 40T / 60T

Lab Manual Isostatic Press is a high-efficient equipment for sample preparation widely used in material research, pharmacy, ceramics, and electronic industries. It allows for precision control of the pressing process and can work in a vacuum environment.

Square Lab Press Mold

Square Lab Press Mold

Create uniform samples easily with Square Lab Press Mold - available in various sizes. Ideal for battery, cement, ceramics, and more. Custom sizes available.

XRF & KBR steel ring lab Powder Pellet Pressing Mold

XRF & KBR steel ring lab Powder Pellet Pressing Mold

Produce perfect XRF samples with our steel ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for accurate molding every time.

Assemble Square Lab Press Mold

Assemble Square Lab Press Mold

Achieve perfect sample preparation with Assemble Square Lab Press Mold. Quick disassembly eliminates sample deformation. Perfect for battery, cement, ceramics, and more. Customizable sizes available.

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Integrated manual heated lab pellet press 120mm / 180mm / 200mm / 300mm

Efficiently process heat-pressing samples with our Integrated Manual Heated Lab Press. With a heating range up to 500°C, it's perfect for various industries.

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

XRF & KBR plastic ring lab Powder Pellet Pressing Mold

Get precise XRF samples with our plastic ring lab powder pellet pressing mold. Fast tableting speed and customizable sizes for perfect molding every time.

Manual Lab Heat Press

Manual Lab Heat Press

Manual hydraulic presses are mainly used in laboratories for various applications such as forging, molding, stamping, riveting and other operations. It allows the creation of complex shapes while saving material.

XRF Boric Acid lab Powder Pellet Pressing Mold

XRF Boric Acid lab Powder Pellet Pressing Mold

Get accurate results with our XRF Boric Acid lab Powder Pellet Pressing Mold. Perfect for preparing samples for X-ray fluorescence spectrometry. Custom sizes available.

Carbide Lab Press Mold

Carbide Lab Press Mold

Form ultra-hard samples with Carbide Lab Press Mold. Made of Japanese high-speed steel, it has a long service life. Custom sizes available.

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Electric Lab Cold Isostatic Press (CIP) 12T / 20T / 40T / 60T

Produce dense, uniform parts with improved mechanical properties with our Electric Lab Cold Isostatic Press. Widely used in material research, pharmacy, and electronic industries. Efficient, compact, and vacuum-compatible.

Warm iostatic press for solid state battery research

Warm iostatic press for solid state battery research

Discover the advanced Warm Isostatic Press (WIP) for semiconductor lamination. Ideal for MLCC, hybrid chips, and medical electronics. Enhance strength and stability with precision.

Cylindrical press mold

Cylindrical press mold

Efficiently form and test most samples with Cylindrical Press Molds in a range of sizes. Made of Japanese high-speed steel, with long service life and customizable sizes.

High precision diamond wire cutting machine

High precision diamond wire cutting machine

The high precision diamond wire cutting machine is a versatile and precise cutting tool designed specifically for material researchers. It utilizes a continuous diamond wire cutting mechanism, enabling precise cutting of brittle materials such as ceramics, crystals, glass, metals, rocks, and various other materials.

304 stainless steel strip foil 20um thick battery test

304 stainless steel strip foil 20um thick battery test

304 is a versatile stainless steel, which is widely used in the production of equipment and parts that require good overall performance (corrosion resistance and formability).

Micro Tissue Grinder

Micro Tissue Grinder

KT-MT10 is a miniature ball mill with a compact structure design. The width and depth are only 15X21 cm, and the total weight is only 8 kg. It can be used with a minimum 0.2ml centrifuge tube or a maximum 15ml ball mill jar.

Conductive Carbon Cloth / Carbon Paper / Carbon Felt

Conductive Carbon Cloth / Carbon Paper / Carbon Felt

Conductive carbon cloth, paper, and felt for electrochemical experiments. High-quality materials for reliable and accurate results. Order now for customization options.

Hybrid Tissue Grinder

Hybrid Tissue Grinder

KT-MT20 is a versatile laboratory device used for rapid grinding or mixing of small samples, whether dry, wet, or frozen. It comes with two 50ml ball mill jars and various cell wall breaking adapters for biological applications such as DNA/RNA and protein extraction.

Related Articles

Infrared Press Mold Techniques for Non-Demolding Applications

Infrared Press Mold Techniques for Non-Demolding Applications

Explore advanced infrared press mold techniques without demolding. Learn about the benefits, applications, and best practices for non-demolding lab processes.

Find out more
A Guide To PREPARE SAMPLES FOR XRF ANALYSIS

A Guide To PREPARE SAMPLES FOR XRF ANALYSIS

There are many ways to prepare samples for XRF analysis. The choice of method will also affect the time it takes to get results and the cost of the analysis.

Find out more
Everything You Need to Know About FTIR Pellet Press

Everything You Need to Know About FTIR Pellet Press

Fourier Transform Infrared (FTIR) spectroscopy is a non-destructive analytical technique used to identify and quantify the chemical composition of a sample. FTIR pellet presses are used to prepare solid samples for FTIR analysis by compressing them into pellets.

Find out more
Operating of Automatic Lab xrf Pellet Press

Operating of Automatic Lab xrf Pellet Press

How to use the Automatic Lab xrf Pellet Press, including steel ring, plastic ring, boric acid mold

Find out more
FTIR Pellet Press The Ultimate Solution for Precise Sample Preparation

FTIR Pellet Press The Ultimate Solution for Precise Sample Preparation

Fourier Transform Infrared (FTIR) spectroscopy is a powerful analytical technique that can be used to identify and quantify the chemical components of a sample. However, to obtain accurate and reliable results, it is crucial to prepare the sample appropriately.

Find out more
How To Turn XRF analysis sample preparation Into Success

How To Turn XRF analysis sample preparation Into Success

In X-ray fluorescence (XRF) analysis, sample preparation is an important step because it can significantly impact both the quality and the efficiency of the analysis.

Find out more
The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The Benchtop KBr Pellet Press: An Efficient Tool for Laboratory Use

The benchtop KBr pellet press is a versatile and efficient tool that produces uniform pellets, ensuring consistent and reliable results. In addition, its adjustable mold can be used flexibly to accommodate a variety of sample sizes and shapes.

Find out more
How to replace the rubber ring of isostatic press and what precautions should be taken

How to replace the rubber ring of isostatic press and what precautions should be taken

How to replace the rubber ring of isostatic press and matters needing attention.

Find out more
Pressing Powder Samples and Molding Polymer Films: A Comprehensive Guide

Pressing Powder Samples and Molding Polymer Films: A Comprehensive Guide

Pressing powder samples is done to create a solid material that remains intact even after the load is removed. This process involves pushing the powder grains closer together, closing the gaps between them and forcing them to flow and rearrange themselves into a more compact arrangement. As the available volume reduces, the flow of particles stops, and they undergo plastic and elastic deformations that result in bonding between the grains.

Find out more
Understanding Cold Isostatic Pressing and its Types

Understanding Cold Isostatic Pressing and its Types

Cold isostatic pressing (CIP) is a method of processing materials that is based on the principle proposed by Blaise Pascal, known as Pascal's law. According to this principle, pressure applied in an enclosed fluid is transmitted in all directions throughout the fluid without any change in magnitude.

Find out more
Simplify Sample Preparation with FTIR Pellet Press

Simplify Sample Preparation with FTIR Pellet Press

FTIR (Fourier Transform Infrared) spectroscopy is a powerful analytical technique used to identify and quantify the chemical composition of materials.

Find out more
The Role of a Porcelain Furnace in Dental Restorations

The Role of a Porcelain Furnace in Dental Restorations

Porcelain furnaces play a crucial role in the creation of dental restorations, as they are used to fire ceramic materials, such as porcelain, to create durable and natural-looking dental prosthetics.

Find out more

Hot Tags