Products Sample Preparation Molds & Accessories XRF & KBR steel ring lab Powder Pellet Pressing Mold for FTIR
XRF & KBR steel ring lab Powder Pellet Pressing Mold for FTIR

Molds & Accessories

XRF & KBR steel ring lab Powder Pellet Pressing Mold for FTIR

Item Number : PMXS

Price varies based on specs and customizations


Material
Cr12MoV
Indenter hardness
HRC60-HRC62
Sample size
φ32 / φ40 mm
Cavity depth
45 mm
External dimensions
φ73×133 mm
ISO & CE icon

Shipping:

Contact us to get shipping details Enjoy On-time Dispatch Guarantee.

Applications

XRF steel ring lab Powder Pellet Pressing Mold is used for the molding of X-ray fluorescence spectrometer samples. The stainless steel ring is used as the support ring of the sample. The tableting speed is fast and the molding effect is good.

Special sizes press molds can be customized according to customer requirements.

Detail & Parts

XRF & KBR steel ring lab Powder Pellet Pressing Mold details

Sample preparation process and demolding process
Sample preparation process and demolding process

Technical specifications

Instrument model PMXS
Sample shape
Die material Alloy tool steel :Cr12MoV
Indenter hardness HRC60-HRC62
Sample size Φ32、Φ40mm (M)
Cavity depth 45m (N)
Dimensions Φ73*133mm(L*H)
Weight 3.2Kg
Diagram of hydraulic powder press size

Operation steps

The steel ring mold is a tool used for molding X-ray fluorescence spectrometer samples. It uses a stainless steel ring as the support for the sample and has a fast tableting speed with good results. The mold produces tablets with an outer diameter of 40mm, inner diameter of 32mm, sample size of 32mm, and a pressing thickness of 5-8mm. Custom sizes are available upon request.

Step 1:Assemble the mold according to the mold operation diagram and install the sample inside the cavity.

Step 1:Assemble the mold according to the mold operation diagram and install the sample inside the cavity.

Step 2: Place the mold in the center position of the tablet press and apply pressure to the required sample pressure.

Step 2: Place the mold in the center position of the tablet press and apply pressure to the required sample pressure.

Step 3: Assemble the mold according to the schematic diagram of the mold withdrawal process, place it in the tablet press, and use a screw to push the sample out of the mold sleeve.

Step 3: Assemble the mold according to the schematic diagram of the mold withdrawal process, place it in the tablet press, and use a screw to push the sample out of the mold sleeve.

Step 4: Remove the mold from the tablet press and gently remove the sample.

Step 4: Remove the mold from the tablet press and gently remove the sample.

Precautions for mold maintenance

To ensure accurate test results, clean the mold surface with dust-free paper before each use to avoid the anti-rust oil from affecting the sample. Avoid exceeding the maximum pressure when applying pressure. Clean the mold and samples after use to prevent corrosion. Apply anti-rust oil and store the mold in a dry environment if not used for a long time to prevent damage.

Step 1: Placing the Mold.

Step 1: Placing the Mold.

To begin, place the mold in the center of the tablet press. It is important to note that the maximum pressure of the mold cannot be exceeded when pressurized. This will prevent any damage to the mold and ensure accurate test results.

Step 2: Cleaning the Mold.

Step 2: Cleaning the Mold.

After each use, it is essential to clean the mold to prevent any contamination of the sample. Using dust-free paper, wipe the surface of the mold clean. If there are sample residues on the surface that cannot be removed, please do not use chemical reagents to clean and soak. This could potentially damage the mold and impact the accuracy of the test results.

Step 3: Applying Anti-Rust Oil.

Step 3: Applying Anti-Rust Oil.

If the mold is not used for an extended period, it is recommended to apply anti-rust oil on the surface of the mold to prevent rusting. This step will help prolong the life of the mold and ensure that it remains in good condition for future use.

Step 4: Storing the Mold.

Step 4: Storing the Mold.

Lastly, if the mold is not used for a long time, it needs to be stored in a dry environment. This will prevent any moisture from accumulating on the mold and causing damage.

Full range of lab press types

Full range of lab press types

Click to view our full range of lab press products.

Any question? Our experts have helped many laboratories choose their lab press, contact us now!

Full range of types of laboratory press molds

We have a full range of molds for you to choose from, and the molds fit the body perfectly.

If you need molds with special shapes, we can also customize them for you.

laboratory press mold

Click to see all press molds.

Warnings

Operator safety is the top important issue! Please operate the equipment with cautions. Working with inflammable& explosive or toxic gases is very dangerous, operators must take all necessary precautions before starting the equipment. Working with positive pressure inside the reactors or chambers is dangerous, operator must fellow the safety procedures strictly. Extra caution must also be taken when operating with air-reactive materials, especially under vacuum. A leak can draw air into the apparatus and cause a violent reaction to occur.

Designed for You

KinTek provide deep custom made service and equipment to worldwide customers, our specialized teamwork and rich experienced engineers are capable to undertake the custom tailoring hardware and software equipment requirements, and help our customer to build up the exclusive and personalized equipment and solution!

Would you please drop your ideas to us, our engineers are ready for you now!

FAQ

What Is A Press Mold?

A press mold is a device used in material processing methods such as cold isostatic pressing (CIP) and metal mold pressing to create molded bodies from powder materials. In CIP, the mold containing the powder is immersed in a pressure medium, and isostatic pressure is applied to the outer surfaces of the mold to compress the powder into a shape. Metal mold pressing applies only uniaxial pressure to the powder material to create molded bodies. CIP can produce products with uniform density and homogeneity due to no frictions with a metal mold.

What Is Press Mould In Ceramics?

Press moulding is a ceramic forming technique that involves the compaction of powders by applying either a rigid or flexible pressure. It can be either uniaxial or isostatic, depending on the shape required. Isostatic pressing is used for shapes that cannot be obtained by uniaxial pressing or for added value products that require high density and isotropic green bodies. The molds for axial-pressing are usually made of steel, while those for isostatic pressing are made of elastomers, silicone, and polyurethanes. This technology is applied in various fields like ceramics, MMC, CMC, and Silicon nitride for cutting tools, components of heavy-duty valves, wear parts for process technology, and more.

How Do You Prepare Pressed Pellets For XRF?

Pressed pellets for XRF analysis are prepared by grinding the sample to a fine particle size and mixing it with a binder or grinding aid. The mixture is then poured into a pressing die and compressed at a pressure of between 15 and 35T. The resulting pellet is ready for analysis. It is important to consider the particle size of the sample, choice of binder, sample dilution ratio, pressure used for pressing, and the thickness of the pellet when designing a sample preparation recipe. Consistency in the preparation procedure is key to ensuring accurate and repeatable results.

How Are Pellet Molds Used?

To use a pellet mold, the powdered or granular material is first loaded into the mold cavity. The material is then compacted by applying pressure using a laboratory press or hydraulic machine. The pressure causes the material to conform to the shape of the mold, resulting in a solid pellet or cylindrical sample. After the compaction process, the pellet is removed from the mold and can be further processed or analyzed as needed.

What Pressure Should XRF Pellets Be?

XRF pellets should be pressed at pressures between 15 and 40 tons for 1-2 minutes to ensure that the binder recrystallizes and that there are no void spaces present in the pellet. The pressure applied by the hydraulic press should be enough for the sample to be completely compressed. The thickness of the pellet is also crucial, as it must be infinitely thick to the X-rays. Working with small particle sizes (<50µm or <75µm) is also important for effective analysis. These factors impact how well the sample binds together under pressure, which affects the analytical results.

What Types Of Materials Can Be Pelletized Using Pellet Molds?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.

What Is The Advantage Of XRF Pressed Pellet Technique?

The advantage of XRF pressed pellet technique is that it produces high-quality results with a higher signal-to-noise ratio, allowing for the detection of even the lightest elements. Quantifying the elemental composition without pressed pellets can lead to significant discrepancies between expected and actual values. The grinding of the sample into fine particles and compressing it into a smooth and flat XRF pellet reduces background scattering and improves the detection of emissions. Pressed pellets are also relatively quick, low-cost, and lend themselves to simple and cost-effective automation for higher throughput laboratories.

How Can One Select The Appropriate Pellet Mold For Their Specific Application?

Pellet molds can be used to pelletize a wide range of materials, including but not limited to powders, granules, metals, ceramics, pharmaceuticals, and catalysts. They are particularly useful for materials that require compaction or shaping before further analysis or processing. Pelletizing materials can improve their flow properties, density, and handling characteristics, making them suitable for applications such as tabletting, catalyst preparation, fuel pellet production, and sample preparation for spectroscopic or analytical techniques.
View more faqs for this product

4.9

out of

5

The XRF steel ring mold is a great addition to my lab. It produces high-quality pellets that are perfect for XRF analysis. I highly recommend this product.

Izaiah Turner

4.7

out of

5

This product has helped me save time and money in my lab. It's a great tool for pressing powders into pellets for XRF analysis.

Anika Patel

4.8

out of

5

I've been using this product for a few months now and I'm very happy with it. It's easy to use and produces consistent results. I would definitely recommend it to other labs.

Noah Garcia

4.6

out of

5

This product is a must-have for any lab that does XRF analysis. It's a great value for the price and it produces high-quality pellets.

Isabella Johnson

4.9

out of

5

I'm very impressed with this product. It's made of high-quality materials and it's very durable. I've been using it for several months now and it still looks and works like new.

Liam Brown

4.7

out of

5

This product has exceeded my expectations. It's very easy to use and it produces consistent results. I would highly recommend it to other labs.

Sophia Jones

4.8

out of

5

I'm very happy with this product. It's a great value for the price and it produces high-quality pellets. I would definitely recommend it to other labs.

Jackson Miller

4.6

out of

5

This product is a great addition to my lab. It's easy to use and it produces consistent results. I would definitely recommend it to other labs.

Olivia Smith

PDF - XRF & KBR steel ring lab Powder Pellet Pressing Mold for FTIR

Download

Catalog of Molds & Accessories

Download

Catalog of Pellet Dies

Download

Catalog of Xrf Pellet Press

Download

REQUEST A QUOTE

Our professional team will reply to you within one business day. Please feel free to contact us!

Related Products

XRF Boric Acid Lab Powder Pellet Pressing Mold for Laboratory Use

XRF Boric Acid Lab Powder Pellet Pressing Mold for Laboratory Use

Get accurate results with our XRF Boric Acid lab Powder Pellet Pressing Mold. Perfect for preparing samples for X-ray fluorescence spectrometry. Custom sizes available.

Laboratory Hydraulic Pellet Press for XRF KBR FTIR Lab Applications

Laboratory Hydraulic Pellet Press for XRF KBR FTIR Lab Applications

Efficiently prepare samples with the Electric Hydraulic Press. Compact and portable, it's perfect for labs and can work in a vacuum environment.

kbr pellet press 2t

kbr pellet press 2t

Introducing the KINTEK KBR Press - a handheld laboratory hydraulic press designed for entry-level users.

Round Bidirectional Press Mold for Lab

Round Bidirectional Press Mold for Lab

The round bidirectional press mold is a specialized tool used in high-pressure molding processes, particularly for creating intricate shapes from metal powders.

No Demolding Lab Infrared Press Mold for Laboratory Applications

No Demolding Lab Infrared Press Mold for Laboratory Applications

Effortlessly test your samples with no demolding required using our lab infrared press mold. Enjoy high transmittance and customizable sizes for your convenience.

Anti-Cracking Press Mold for Lab Use

Anti-Cracking Press Mold for Lab Use

The anti-cracking press mold is a specialized equipment designed for molding various shapes and sizes of film using high pressure and electric heating.

Assemble Lab Cylindrical Press Mold

Assemble Lab Cylindrical Press Mold

Get reliable and precise molding with Assemble Lab Cylindrical Press Mold. Perfect for ultra-fine powder or delicate samples, widely used in material research and development.

Special Heat Press Mold for Lab Use

Special Heat Press Mold for Lab Use

Square, round and flat plate forming dies for hot presses.

Special Shape Press Mold for Lab

Special Shape Press Mold for Lab

Discover high-pressure special shape press molds for diverse applications, from ceramics to automotive parts. Ideal for precise, efficient molding of various shapes and sizes.

Related Articles

Operating of Automatic Lab xrf Pellet Press

Operating of Automatic Lab xrf Pellet Press

How to use the Automatic Lab xrf Pellet Press, including steel ring, plastic ring, boric acid mold

Find out more
Effective Preparation of Samples for XRF Analysis via Pressed Pellets Method

Effective Preparation of Samples for XRF Analysis via Pressed Pellets Method

The process of making pressed pellets for XRF analysis is a popular and widely used method. It offers several advantages over other sample preparation techniques. Pressed pellets have a higher signal-to-noise ratio compared to loose powder samples, allowing for the detection of even the lightest elements.

Find out more
What is xrf analysis and how to making pressed xrf pellets

What is xrf analysis and how to making pressed xrf pellets

What is xrf analysis and how to making pressed xrf pellets, there are also some precautions in the xrf sample preparation process

Find out more
Guide for Xrf Pellet Press

Guide for Xrf Pellet Press

An XRF tablet press is a machine used to prepare samples for X-ray fluorescence (XRF) analysis by pressing them into a uniform tablet or pellet form.

Find out more
A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

A Comprehensive Guide on Pressing XRF Pellets Using a KinTek Automatic Hydraulic Press

XRF (X-ray fluorescence) analysis is a powerful technique used in various industries for material analysis. One crucial step in the XRF analysis process is the preparation of high-quality XRF pellets. These pellets serve as the sample for analysis and need to be properly pressed to ensure accurate results.

Find out more
Automated laboratory XRF and KBR pellet press operating procedures

Automated laboratory XRF and KBR pellet press operating procedures

Introduction to automated laboratory XRF and KBR pellet press operating procedures.

Find out more
How to Choose the Right XRF Pellet Press for Your Needs

How to Choose the Right XRF Pellet Press for Your Needs

X-ray fluorescence (XRF) analysis requires the preparation of uniform, high-quality pellets for accurate analysis. To achieve this, there are several XRF pellet preparation methods available, including hydraulic, manual, and automated presses.

Find out more
XRF Pelletising for Solid Samples Tips and Tricks

XRF Pelletising for Solid Samples Tips and Tricks

X-ray fluorescence (XRF) analysis is a non-destructive analytical technique used to determine the elemental composition of solid, liquid, and powdered samples.

Find out more
Determining Optimal Pressure for XRF Pellet Pressing

Determining Optimal Pressure for XRF Pellet Pressing

The process of XRF pellet pressing involves applying pressure to a sample to create a solid pellet that can be analyzed by an X-ray fluorescence (XRF) spectrometer. Optimal pressure is crucial for achieving accurate and reliable results in XRF analysis.

Find out more
Pressing Powder Samples and Molding Polymer Films: A Comprehensive Guide

Pressing Powder Samples and Molding Polymer Films: A Comprehensive Guide

Pressing powder samples is done to create a solid material that remains intact even after the load is removed. This process involves pushing the powder grains closer together, closing the gaps between them and forcing them to flow and rearrange themselves into a more compact arrangement. As the available volume reduces, the flow of particles stops, and they undergo plastic and elastic deformations that result in bonding between the grains.

Find out more
Techniques for Sample Preparation in X-Ray Fluorescence Analysis: Pressed and Loose Powder Methods

Techniques for Sample Preparation in X-Ray Fluorescence Analysis: Pressed and Loose Powder Methods

X-ray fluorescence (XRF) analysis is a common technique used for analyzing powders in various industries. When it comes to preparing powder samples for XRF analysis, there are two main methods: pressed powder method and loose powder method.The pressed powder method involves compressing the sample into a pellet or disk, while the loose powder method involves simply placing the sample into a cup or container. Each method has its advantages and disadvantages, and the choice of method depends on the specific requirements of the analysis.

Find out more
The Impact of Pressure on XRF Pellet Quality

The Impact of Pressure on XRF Pellet Quality

X-ray fluorescence (XRF) analysis is a non-destructive method used to determine the elemental composition of a sample. Sample preparation is a crucial step in XRF analysis and is essential for obtaining accurate results.

Find out more